X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2018, Vol. 40 ›› Issue (5): 934-942.doi: 10.7522/j.issn.1000-0240.2018.0508

• 寒区科学与技术 • 上一篇    下一篇

青藏铁路多年冻土区含融化夹层路基的热状态

王宏磊1,2, 孙志忠1, 刘永智1, 武贵龙1   

  1. 1. 中国科学院 西北生态环境资源研究院 冻土工程国家重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2018-01-05 修回日期:2018-09-04 出版日期:2018-10-25 发布日期:2018-12-10
  • 通讯作者: 孙志忠,E-mail:sun@lzb.ac.cn. E-mail:sun@lzb.ac.cn
  • 作者简介:王宏磊(1990-),男,山西大同人,2015年在兰州交通大学获学士学位,现为中国科学院西北生态环境资源研究院在读硕士研究生,从事冻土环境与工程方面的研究.E-mail:hongleiwang@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目(41571064;41630636);冻土工程国家重点实验室自主研究项目(SKLFSE-ZT-09)资助

Thermal state of embankment with thawed interlayer in permafrost regions of the Qinghai-Tibet Railway

WANG Honglei1,2, SUN Zhizhong1, LIU Yongzhi1, WU Guilong1   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Science, Lanzhou 730000, China;
    2. University of Chinese Academy of Science, Beijing 100049, China
  • Received:2018-01-05 Revised:2018-09-04 Online:2018-10-25 Published:2018-12-10

摘要: 基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。

关键词: 青藏铁路, 热状态, 融化夹层, 多年冻土

Abstract: A ground temperature section with thawed interlayer within an embankment along the Qinghai-Tibet Railway had been monitored from 2005 to 2015. Thus the annual variation of thermal state under original state and within embankment, variation of thawed interlayer and its effect on thermal state of permafrost are analyzed in the background of climate warming and engineering activity. The results show that:1) permafrost table under original state and within embankment and its thermal stability had descended annually; 2) thawed interlayer had existed under left shoulder and its thickness had increased undulately, due to the artificial permafrost table going down; meantime, thawed interlayer had not found under original state and right shoulder; 3) thermal accumulation nearby permafrost table had been remarkable, resulting in decline of permafrost table and increase of temperature nearby permafrost table; moreover, thermal stability of permafrost had been weakened; 4) reinforcement of embankment with active-cooling had successfully improved thermal stability of the embankment; artificial permafrost table had lifted upwards within right shoulder after reinforcement of embankment and its thermal stability had enhanced; whereas, left shoulder had only maintained original thermal stability by the same engineering operation due to the existence of thawed interlayer, then the efficiency of active-cooling had performed poorly under left shoulder to a certain extent.

Key words: Qinghai-Tibet Railway, thermal state, thawed interlayer, permafrost

中图分类号: 

  • U212.22