冰川冻土 ›› 2021, Vol. 43 ›› Issue (6): 1794-1808.doi: 10.7522/j.issn.1000-0240.2018.1201
收稿日期:
2018-11-27
修回日期:
2019-06-12
出版日期:
2021-12-31
发布日期:
2022-01-28
通讯作者:
马巍
E-mail:cmt620422@163.com;mawei@lzb.ac.cn
作者简介:
柴明堂,副教授,主要从事寒区环境与工程研究. E-mail: 基金资助:
Mingtang CHAI1,2(),Wei MA2(
),Yanhu MU2
Received:
2018-11-27
Revised:
2019-06-12
Online:
2021-12-31
Published:
2022-01-28
Contact:
Wei MA
E-mail:cmt620422@163.com;mawei@lzb.ac.cn
摘要:
作为一种多年冻土区的特殊水文地质现象,冻结层上水(或多年冻土层上水)的分布受局地因素的控制,且随活动层的季节性冻融而变化,影响地表水和地下水循环以及多年冻土环境中的水热平衡。多年冻土将冻结层上水限制在一个狭窄的空间内,在暖季冻结层上水侧向和竖向的渗流传热将加剧多年冻土的退化,也会对上覆工程构筑物的稳定运营造成极大威胁。目前关于冻结层上水的研究主要集中在分布特征、变化规律、流量计算、渗流模拟、水热耦合等方面。研究发现:在全球升温背景下,多年冻土退化速率加剧,随着冻土厚度变薄和融区出现,冻结层上水的流量及其与地下水的交换量均发生变化,除了影响局地水文特征外,还与工程病害密切相关,如坡脚积水、路基沉降以及路面裂缝等。以区域分布特征为出发点,对冻结层上水的研究现状进行了归纳和总结,并对其工程影响有关的渗流传热理论研究成果进行了梳理,对今后需要进行深入研究的方向进行了展望。这有助于全面理解冻结层上水在冻土区水文过程中的功能,为相关研究提供了进一步的理论参考。
中图分类号:
柴明堂, 马巍, 穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808.
Mingtang CHAI, Wei MA, Yanhu MU. Distribution and engineering effect of supra-permafrost groundwater: review and prospect[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1794-1808.
1 | Ding Yongjian, Zhang Shiqiang, Chen Rensheng, et al. Introduction to hydrology in cold regions[M]. Beijing: Science Press, 2017. |
丁永建, 张世强, 陈仁升, 等. 寒区水文导论[M]. 北京: 科学出版社, 2017. | |
2 | Metcalfe R A, Buttle J M. Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada[J]. Hydrological Processes, 2001, 15(12): 2305-2324. |
3 | Cheng Guodong, Jin Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrology and Engineering Geology, 2013, 40(1): 1-11. |
程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. | |
4 | Liu Guangsheng, Wang Genxu, Sun Xiangyang, et al. Variation characteristics of stable isotopes in precipitation and river water in Fenghuoshan permafrost watershed[J]. Advances in Water Science, 2012, 23(5): 621-627. |
刘光生, 王根绪, 孙向阳, 等. 多年冻土区风火山流域降水河水稳定同位素特征分析[J]. 水科学进展, 2012, 23(5): 621-627. | |
5 | Wang Genxu, Hu Hongchang, Li Taibin. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375(3/4): 438-449. |
6 | Pang Qiangqiang, Zhao Lin, Li Shuxun, et al. Active layer thickness variations on the Qinghai-Tibet Plateau under the scenarios of climate change[J]. Environmental Earth Sciences, 2012, 66(3): 849-857. |
7 | Chang Juan, Wang Genxu, Li Chunjie, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Scientia Sinica: Terrae, 2015, 45(4): 481-493. |
常娟, 王根绪, 李春杰, 等. 青藏高原连续多年冻土区的冻结层上水季节动态及其对活动层土壤冻融过程的响应特征[J]. 中国科学: 地球科学, 2015, 45(4): 481-493. | |
8 | Williams J R, Waller R M. Ground water occurrence in permafrost regions of Alaska[C]// Proceedings of the 1st International Conference on Permafrost. Washington, D.C.: National Academy of Sciences, 1966: 159-164. |
9 | Woo M K. Permafrost hydrology[M]. Heidelberg, Germany: Springer, 2012. |
10 | Shepelev V V. Supra-permafrost water in cold regions[M]. Dai Changlei, Li Huiyu, Sun Yingna, et al trans. Beijing: China Water and Power Press, 2014. [ |
舍佩廖夫. 寒区冻结层上水[M]. 戴长雷, 李卉玉, 孙颖娜, 等译. 北京: 中国水利水电出版社, 2014.] | |
11 | Liu Baotian, Li Yixin. The exploitation and change characteristics of groundwater in seasonal frozen ground[J]. Groundwater, 1996(1): 35-37. |
柳宝田, 李益新. 季节性冻土区地下水的变化规律及开发利用[J]. 地下水, 1996(1): 35-37. | |
12 | Jorgenson M T, Romanovsky V, Harden J, et al. Resilience and vulnerability of permafrost to climate change[J]. Canadian Journal of Forest Research, 2010, 40(7): 1219-1236. |
13 | Woo M K. Permafrost hydrology in North America[J]. Atmosphere-Ocean, 1986, 24(3): 201-234. |
14 | Xiao Difang, Liao Houchu, Guo Feng. Discussion on the permafrost hydrology[C]// The 2nd Seminar on Sustainable Utilization of Water Resources in Cold Regions. Beijing: China Water and Power Press, 2009: 80-89. [ |
肖迪芳, 廖厚初, 郭峰. 冻土水文学方法问题讨论[C]//第2届“寒区水资源及其可持续利用”学术研讨会. 北京: 中国水利水电出版社, 2009: 80-89.] | |
15 | Wu Mousong, Wang Kang, Tan Xiao, et al. Water movement in soil freezing and thawing cycles and flux simulation[J]. Advances in Water Science, 2013, 24(4): 543-550. |
吴谋松, 王康, 谭霄, 等. 土壤冻融过程中水流迁移特性及通量模拟[J]. 水科学进展, 2013, 24(4): 543-550. | |
16 | Allard M, Lemay M, Barrette C, et al. Chapter 6. Permafrost and climate change in Nunavik and Nunatsiavut: importance for municipal and transportation infrastructures[R]// Nunavik and Nunatsiavut: from science to policy. Québec City, Québec, Canada: ArcticNet Inc., 2012: 171-197. |
17 | Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost: a review[J/OL]. Vadose Zone Journal, 2016, 15(6)[2021-12-10]. . |
18 | Cheng Guodong. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176. |
19 | Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931. |
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931. | |
20 | Zhuotong Nan, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China: Series D Earth Sciences, 2005, 48(6): 797-804. |
21 | Zhang Renhe, Su Fengge, Jiang Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3036-3047. |
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3036-3047. | |
22 | Cui Peng, Jia Yang, Su Fenghuan, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 985-992. |
崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017, 32(9): 985-992. | |
23 | Zhou Youwu, Qiu Guoqing, Guo Dongxin, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 128-136. |
周幼吾, 邱国庆, 郭东信, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 128-136. | |
24 | Cheng Guodong, Jin Huijun. Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China[J]. Hydrogeology Journal, 2013, 21(1): 5-23. |
25 | Wang Shaoling, Bian Chunyu, Wang Jian. Hydrogeological characteristics of permafrost area of Qing-Zang Plateau[J]. Qinghai Geology, 1994(1): 40-47. |
王绍令, 边纯玉, 王健. 青藏高原多年冻土区水文地质特征[J]. 青海地质, 1994(1): 40-47. | |
26 | Ye Renzheng, Chang Juan. Study of groundwater in permafrost regions of China: status and process[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 183-196. |
叶仁政, 常娟. 中国冻土地下水研究现状与进展综述[J]. 冰川冻土, 2019, 41(1): 183-196. | |
27 | Bi Huanjun. An analysis of the characteristics of groundwater in permafrost regions of the Tibetan Plateau and its development and utilization perspective[J]. Journal of Glaciology and Geocryology, 2003, 25(): 17-19. |
毕焕军. 青藏高原多年冻土区地下水特征及开发利用前景分析[J]. 冰川冻土, 2003, 25(): 17-19. | |
28 | Ma Wei, Niu Fujun, Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11): 1185-1191. |
马巍, 牛富俊, 穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191. | |
29 | Jin Huijun, Yu Qihao, Wang Shaoling, et al. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 2008, 53(3): 317-333. |
30 | Peng Xuanming, Wu Qingbai, Tian Mingzhong. The effect of groundwater table lowering on ecological environment in the headwaters of the Yellow River[J]. Journal of Glaciology and Geocryology, 2003, 25(6): 667-671. |
彭轩明, 吴青柏, 田明中. 黄河源区地下水位下降对生态环境的影响[J]. 冰川冻土, 2003, 25(6): 667-671. | |
31 | Jin Huijun, He Ruixia, Cheng Guodong, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J/OL]. Environmental Research Letters, 2009, 4(4) [2019-06-10]. . |
32 | Guo Fengqing, Zeng Hui, Cong Peitong. Sources, classifications, new research development and tendency of the groundwater on the Qinghai-Tibet Plateau[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(3): 160-165. |
郭凤清, 曾辉, 丛沛桐. 青藏高原地下水的来源、分类、研究动向及发展趋势[J]. 山西农业大学学报(自然科学版), 2016, 36(3): 160-165. | |
33 | Deng Mingwan. Distribution of groundwater in permafrost regions along the Qinghai-Tibet Railway[J]. Railway Technical Innovation, 2003(2): 25-27. |
邓明万. 青藏铁路沿线多年冻土区地下水的分布规律[J]. 铁路技术创新, 2003(2): 25-27. | |
34 | Chen Chongxi, Lin Min. Groundwater dynamics[M]. Wuhan: China University of Geosciences Press, 1999. |
陈崇希, 林敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. | |
35 | Tan Liwei, Li Fuxue, Li Zhenping, et al. Study on groundwater characteristics and development in permafrost region of Tuotuo River[J]. Yellow River, 2016, 38(5): 62-67. |
谭立渭, 李富学, 李振萍, 等. 沱沱河多年冻土区地下水特征及开发利用研究[J]. 人民黄河, 2016, 38(5): 62-67. | |
36 | Li Zhenping. Characteristic analysis of groundwater in Qinghai Tanggulashan area[D]. Beijing: China University of Geosciences, 2013. |
李振萍. 青海唐古拉山镇地区地下水特征分析[D]. 北京: 中国地质大学, 2013. | |
37 | Lin Zhanju, Niu Fujun, Xu Zhiying, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21: 315-324. |
38 | Yoshikawa K, Hinzman L D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost and Periglacial Processes, 2003, 14: 151-160. |
39 | Niu Fujun, Lin Zhanju, Liu Hua, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3/4): 222-233. |
40 | Luo Jing, Niu Fujun, Lin Zhanju, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556-564. |
41 | You Yanhui, Yu Qihao, Pan Xicai, et al. Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau[J]. Hydrological Processes, 2017, 31(13): 2429-2437. |
42 | Xu Zongxue, Zhao Fangfang, Li Jingyu. Response of streamflow to climate change in the headwater catchment of the Yellow River basin[J]. Quaternary International, 2009, 208(1/2): 62-75. |
43 | Zheng Hongxing, Zhang Lu, Liu Changming, et al. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s[J]. Hydrological Processes, 2007, 21(7): 886-893. |
44 | Zhang Senqi, Wang Yonggui, Zhu Hua, et al. Changes in water environment and their ecologicgeologic environmental effects in the headwater area of the Yellow River[J]. Hydrogeology and Engineering Geology, 2003, 30(3): 11-14. |
张森琦, 王永贵, 朱桦, 等. 黄河源区水环境变化及其生态环境地质效应[J]. 水文地质工程地质, 2003, 30(3): 11-14. | |
45 | Cao Wenbing, Wan Li, Zhou Xun, et al. A study of the geological environmental of suprapermafrost water in the headwater area of the Yellow River[J]. Hydrogeology and Engineering Geology, 2003, 30(6): 6-10. |
曹文炳, 万力, 周训, 等. 黄河源区冻结层上水地质环境影响研究[J]. 水文地质工程地质, 2003, 30(6): 6-10. | |
46 | Hong Tao. Space-time variety characteristics and eco-environment effect of permafrost in the source region of the Yellow River[D]. Beijing: China University of Geosciences, 2013. |
洪涛. 黄河源区多年冻土的时空变化特征及其生态环境效应[D]. 北京: 中国地质大学, 2013. | |
47 | Cao Bin. Conditions and dynamics of permafrost in the Qilian Mountains over the upper reaches of Heihe River basin[D]. Lanzhou: Lanzhou University, 2018. |
曹斌. 黑河上游祁连山区多年冻土状态与动态研究[D]. 兰州: 兰州大学, 2018. | |
48 | Zhang Ju, Liu Xingchun, Yin Zheng. Hydrogeological conditions of basin on the west section of Qilianshan[J]. Acta Geologica Gansu, 1997(1): 80-84. |
张举, 刘兴春, 尹政. 祁连山西段诸盆地水文地质条件[J]. 甘肃地质, 1997(1): 80-84. | |
49 | Cao Jiye. Appraisement on the groundwater resources in permafrost areas in the middle-east section of Mt. Qilian[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 65-76. |
曹继业. 祁连山中、东段多年冻结区地下水天然资源评价[J]. 冰川冻土, 1985, 7(1): 65-76. | |
50 | Ma Rui, Sun Ziyong, Hu Yalu, et al. Hydrological connectivity from glaciers to rivers in the Qinghai-Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4803-4823. |
51 | Evans S G, Ge Shemin, Liang Sihai. Analysis of groundwater flow in mountainous, headwater catchments with permafrost[J]. Water Resources Research, 2015, 51(12): 9564-9576. |
52 | Yang Yongpeng, Cheng Dongxing, Fu Huixia. Engineering geological characteristics and evaluations of permafrost in Daxing’an Mountains[J]. Journal of Engineering Geology, 2008, 16(5): 657-662. |
杨永鹏, 程东幸, 伏慧霞. 东北大兴安岭多年冻土区工程地质特征及评价[J]. 工程地质学报, 2008, 16(5): 657-662. | |
53 | Chen Qinglai. Engineering geological research of the permafrost in high latitudes area and its impact on pipeline construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007. |
陈情来. 高纬度地区管道建设中的冻土工程地质问题研究[D]. 北京: 中国地质科学院, 2007. | |
54 | Zhao Qin, Xu Yunchang, Kou Liwei, et al. Underground water types and the related regulation in perennial frozen soil environment in Holapen Basin[J]. Journal of Engineering of Heilongjiang University, 2001, 28(3): 85-87. |
赵钦, 徐运昌, 寇丽伟, 等. 霍拉盆盆地多年冻土环境中地下水类型及赋存规律[J]. 黑龙江大学工程学报, 2001, 28(3): 85-87. | |
55 | Yuan Haiyi, Liu Xuekui. Permafrost characteristics and the exploitation and utilization of ground water in Hanjiayuan area, Da Hinggan Ling[J]. Journal of Glaciology and Geocryology, 1993, 15(2): 242-245. |
元海义, 刘学奎. 大兴安岭韩家园地区多年冻土特征及其地下水的开采和利用[J]. 冰川冻土, 1993, 15(2): 242-245. | |
56 | Yin Xilin. Distribution of long-term frozen soil and characteristics of freezing layer water at northeast slope of Mt. Daxinganlin[J]. Site Investigation Science and Technology, 1999(3): 45-51. |
尹喜霖. 大兴安岭东北坡多年冻土分布及冻结层水特征[J]. 勘察科学技术, 1999(3): 45-51. | |
57 | Romanovsky V E, Drozdov D S, Oberman N G, et al. Thermal state of permafrost in Russia[J]. Permafrost and Periglacial Processes, 2010, 21(2): 136-155. |
58 | Hiyama T, Asai K, Kolesnikov A B, et al. Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia[J]. Environmental Research Letters, 2013, 8(3): 035040. |
59 | Shepelev V V. Movement characteristics of frozen groundwater of permafrost region of Russia[J]. |
Dai Changlei, Sun Yingna, Miao Xingya, trans. Heilongjiang Water Resources, 2016, 2(8): 22-29. | |
舍佩廖夫. 俄罗斯永冻区冻结层上水动态特征[J]. 戴长雷, 孙颖娜, 苗兴亚,译. 黑龙江水利, 2016, 2(8): 22-29. | |
60 | Shepelev V V. The influence of human activities of the suprapermafrost water in the cryolithozone[J]. |
Dai Changlei, Li Huiyu, trans. Heilongjiang Water Resources, 2016, 2(11): 33-41. | |
舍佩廖夫. 人类活动对冻结层上水的影响[J]. 戴长雷, 李卉玉,译. 黑龙江水利, 2016, 2(11): 33-41. | |
61 | Shepelev V V. Movement characteristics of different types of frozen groundwater[J]. |
Dai Changlei, Sun Yingna, Liu Yue, trans. Heilongjiang Water Resources, 2016, 2(7): 18-24. | |
舍佩廖夫. 不同类型冻结层上水运动特征[J]. 戴长雷, 孙颖娜, 刘月,译. 黑龙江水利, 2016, 2(7): 18-24. | |
62 | Chadburn S E, Burke E J, Cox P M, et al. An observation-based constraint on permafrost loss as a function of global warming[J]. Nature Climate Change, 2017, 7(5): 340-345. |
63 | Walvoord M A, Striegl R G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen[J/OL]. Geophysical Research Letters, 2007, 34(12)[2021-12-10]. . |
64 | Aziz O I A, Burn D H. Trends and variability in the hydrological regime of the Mackenzie River Basin[J]. Journal of Hydrology, 2006, 319(1/2/3/4): 282-294. |
65 | Woo M K, Kane D L, Carey S K, et al. Progress in permafrost hydrology in the new millennium[J]. Permafrost and Periglacial Processes, 2008, 19(2): 237-254. |
66 | Walvoord M A, Voss C I, Wellman T P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States[J/OL]. Water Resources Research, 2012, 48(7)[2021-12-10]. . |
67 | Wellman T P, Voss C I, Walvoord M A. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)[J]. Hydrogeology Journal, 2013, 21(1): 281-298. |
68 | Woo M K, Carey S K.Permafrost, seasonal frost and slope hydrology, central Wolf Creek basin, Yukon[C]// Proceedings of Workshop on Wolf Creek Research Basin: hydrology, ecology, environment. Saskatoon, Saskatchewan, Canada: National Water Research Institute, 1999: 45-53. |
69 | Woo M K, Steer P. Occurrence of surface flow on arctic slopes, southwestern Cornwallis Island[J]. Canadian Journal of Earth Sciences, 1982, 19(12): 2368-2377. |
70 | Woo M K, Xia Z J. Suprapermafrost groundwater seepage in gravelly terrain, Resolute, NWT, Canada[J]. Permafrost and Periglacial Processes, 1995, 6(1): 57-72. |
71 | Clark I D, Lauriol B, Harwood L, et al. Groundwater contributions to discharge in a permafrost setting, Big Fish River, NWT, Canada[J]. Arctic, Antarctic, and Alpine Research, 2001, 33(1): 62-69. |
72 | Bense V F, Ferguson G, Kooi H. Evolution of shallow groundwater flow systems in areas of degrading permafrost[J/OL]. Geophysical Research Letters, 2009, 36(22) [2019-06-10]. . |
73 | Woo M, Steer P. Slope hydrology as influenced by thawing of the active layer, Resolute, NWT[J]. Canadian Journal of Earth Sciences, 1983, 20(6): 978-986. |
74 | Woo M, Young K L, Brown L. High Arctic patchy wetlands: hydrologic variability and their sustainability[J]. Physical Geography, 2006, 27(4): 297-307. |
75 | Hodgson R, Young K L. Preferential groundwater flow through a sorted net landscape, Arctic Canada[J]. Earth Surface Processes and Landforms, 2001, 26(3): 319-328. |
76 | de Grandpré I, Fortier D, Stephani E. Impact of groundwater flow on permafrost degradation: implications for transportation infrastructures[C]// Proceedings of the Join 63rd Canadian Geotechnical Conference and 6th Canadian Permafrost Conference. Calgary, Alberta, Canada: Canadian Geotechnical Society, 2010: 534-540. |
77 | Darrow M M, Daanen R P, Zottola J T, et al. Impact of groundwater flow on permafrost degradation and transportation infrastructure stability[R]. Washington, D.C.: U.S. Department of Transportation, 2013. |
78 | Kutvitskaya N B, Kozlova E B. Design of engineering protection for beds and foundations of oil, gas, and condensate field facilities under difficult permafrost soil conditions[J]. Soil Mechanics and Foundation Engineering, 2015, 52(5): 267-272. |
79 | Panda S K, Prakash A, Solie D N, et al. Remote sensing and field-based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska[J]. Permafrost and Periglacial Processes, 2010, 21(3): 271-281. |
80 | de Grandpré I, Fortier D, Stephani E. Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater[J]. Canadian Journal of Earth Sciences, 2012, 49(8): 953-962. |
81 | Zottola J, Darrow M, Daanen R, et al. Investigating the effects of groundwater flow on the thermal stability of embankments over permafrost[C]// Proceedings of the 15th International Specialty Conference on Cold Regions Engineering. Québec City, Québec, Canada: American Society of Civil Engineers, 2012: 601-611. |
82 | Wen Zhi, Zhang Tingjun, Sheng Yu, et al. Managing ice-rich permafrost exposed during cutting excavation along Qinghai-Tibetan Railway: experiences and implementation[J]. Engineering Geology, 2011, 122(3/4): 316-327. |
83 | Mu Yanhu, Ma Wei, Li Guoyu, et al. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2018, 154: 23-31. |
84 | Makarov V N. Groundwater modification and its effect on the infrastructure of Yakutsk[J]. Materials and Geoenvironment, 2003, 50: 201-204. |
85 | Ghias M S, Therrien R, Molson J, et al. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada[J]. Hydrogeology Journal, 2017, 25(3): 657-673. |
86 | Oldenborger G A, LeBlanc A M, Sladen W E. Geophysical monitoring of permafrost conditions at Iqaluit International Airport, Baffin Island, Nunavut [C]// Summary of Activities 2013. Iqaluit, NU, Canada: Canada-Nunavut Geoscience Office, 2014: 129-138. |
87 | Wang G X, Mao T X, Chang J, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550: 307-317. |
88 | Chang Juan, Wang Genxu, Mao Tianxu. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model[J]. Journal of Hydrology, 2015, 529: 1211-1220. |
89 | Wang Lei, Li Xiuping, Zhou Jing, et al. Hydrological modelling over the Tibetan Plateau: current status and perspective[J]. Advances in Earth Science, 2014, 29(6): 674-682. |
王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682. | |
90 | Tang Qiuhong, Oki T, Kanae S. A distributed biosphere hydrological model (DBHM) for large river basin[J]. Proceedings of Hydraulic Engineering, 2006, 50: 37-42. |
91 | Wang Lei, Koike T, Yang Kun, et al. Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin[J]. Journal of Hydrology, 2009, 377(1/2): 21-34. |
92 | Chen Rensheng, Kang Ersi, Ding Yongjian. Some knowledge on and parameters of China’s alpine hydrology[J]. Advances in Water Science, 2014, 25(3): 307-317. |
陈仁升, 康尔泗, 丁永建. 中国高寒区水文学中的一些认识和参数[J]. 水科学进展, 2014, 25(3): 307-317. | |
93 | Hayashi M, Goeller N, Quinton W L, et al. A simple heat-conduction method for simulating the frost-table depth in hydrological models[J]. Hydrological Processes: An International Journal, 2007, 21(19): 2610-2622. |
94 | Hinzman L D, Goering D J, Kane D L. A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D22): 28975-28991. |
95 | Frampton A, Painter S, Lyon S W, et al. Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change[J]. Journal of Hydrology, 2011, 403(3/4): 352-359. |
96 | Lemieux J-M, Sudicky E A, Peltier W R, et al. Simulating the impact of glaciations on continental groundwater flow systems:1. relevant processes and model formulation[J/OL]. Journal of Geophysical Research: Earth Surface, 2008, 113 [2019-06-10]. . |
97 | Nicolsky D J, Romanovsky V E, Alexeev V A, et al. Improved modeling of permafrost dynamics in a GCM land-surface scheme[J/OL]. Geophysical Research Letters, 2007, 34(8) [2019-06-10]. . |
98 | Swenson S C, Lawrence D M, Lee H. Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J/OL]. Journal of Advances in Modeling Earth Systems, 2012, 4(3)[2021-12-10]. . |
99 | Niu Guoyue, Yang Zongliang, Dickinson R E, et al. Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data[J/OL]. Journal of Geophysical Research: Atmospheres, 2007, 112 [2019-06-10]. . |
100 | Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence[J]. Hydrological Processes: An International Journal, 2007, 21(19): 2650-2667. |
101 | Marsh P, Hey M. The flooding hydrology of Mackenzie Delta lakes near Inuvik, NWT, Canada[J]. Arctic, 1989, 42: 41-49. |
102 | Marsh P. Permafrost and lakes in the Mackenzie Delta[C]// Proceedings of the 5th Canadian Permafrost Conference. Québec City, Québec, Canada: University Laval Press, 1990, 54: 131-136. |
103 | Brutsaert W. Hydrology: an introduction[M]. Cambridge, UK: Cambridge University Press, 2005. |
104 | Lyon S W, Destouni G, Giesler R, et al. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis[J]. Hydrology and Earth System Sciences, 2009, 13(5): 595-604. |
105 | Yang Yang. Study on influence of groundwater seepage on freezing temperature field of contact channel[D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2017. |
杨炀. 地下水渗流对联络通道冻结温度场的影响研究[D]. 江苏徐州: 中国矿业大学, 2017. | |
106 | Boike J, Roth K, Overduin P P. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia)[J]. Water Resources Research, 1998, 34(3): 355-363. |
107 | Guo Lina, Li Tongchun, Liu Xiaoqing, et al. FEM analysis research on unsteady temperature-seepage coupling system of frozen soil phase changing[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 98-104. |
郭利娜, 李同春, 刘晓青, 等. 考虑冻土相变的非稳定温度场-渗流场耦合有限元分析研究[J]. 四川大学学报(工程科学版), 2011, 43(6): 98-104. | |
108 | Liu Bangjia. Study on the constitutive change laws of the aeolian soil roadbed under the coupling function of freezing, thawing and the transfusion[D]. Fuxin, Liaoning: Liaoning Technical University, 2009. |
刘浜葭. 冻融和渗流耦合作用下风积土路基结构性演变规律的研究[D]. 辽宁阜新: 辽宁工程技术大学, 2009. | |
109 | Ge Shemin, McKenzie J, Voss C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J/OL]. Geophysical Research Letters, 2011, 38(14) [2019-06-10]. . |
110 | Veuille S, Fortier D, Verpaelst M, et al. Heat advection in the active layer of permafrost: physical modelling to quantify the impact of subsurface flow on soil thawing[C]// Proceedings of the 7th Canadian Conference on Permafrost and the 68th Canadian Geotechnical Conference. Québec City, Québec, Canada: Canadian Geotechnical Society, 2015: 20-23. |
[1] | 杜冉, 彭小清, 金浩东, 魏庆, 孙文, 贾诗超, 范成彦, 王昆, 魏思浩, 赵耀华, FRAUENFELD Oliver W.. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188-202. |
[2] | 刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339. |
[3] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[4] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[5] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[6] | 刘志云,黄川,于晖,钟振涛,崔福庆. 青藏工程走廊活动层厚度预测模型与分布特征研究[J]. 冰川冻土, 2021, 43(5): 1458-1467. |
[7] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[8] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[9] | 胡锦华, 陆峥, 仝金辉, 李小雁, 刘绍民, 杨晓帆. 基于计算流体力学的寒区土壤水热耦合模型研究[J]. 冰川冻土, 2021, 43(4): 948-963. |
[10] | 赵海鹏, 吕明侠, 王一博, 杨文静, 刘鑫, 白炜. 青藏高原风火山流域坡面尺度活动层土壤水热时空变化特征[J]. 冰川冻土, 2020, 42(4): 1158-1168. |
[11] | 原黎明, 赵林, 胡国杰, 马露, 周华云, 刘世博, 乔永平. 青藏高原中部典型下垫面活动层水热动态及其热扩散率研究[J]. 冰川冻土, 2020, 42(2): 378-389. |
[12] | 郭林茂, 常娟, 徐洪亮, 叶仁政. 基于BP神经网络和FEFLOW模型模拟预测多年冻土活动层温度[J]. 冰川冻土, 2020, 42(2): 399-411. |
[13] | 马俊杰, 李韧, 刘宏超, 吴通华, 肖瑶, 杜宜臻, 杨淑华, 史健宗, 乔永平. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土, 2020, 42(1): 195-204. |
[14] | 朱荣, 陈记祖, 孙维君, 秦翔, 刘宇硕. 青藏高原北部多温型山谷冰川不同海拔处冰温变化研究——以祁连山老虎沟12号冰川为例[J]. 冰川冻土, 2019, 41(6): 1292-1301. |
[15] | 贾玉峰, 李忠勤, 金爽, 徐春海, 张明军, 邓海军, 梁鹏斌, 刘爽爽. 1959-2017年天山乌鲁木齐河源1号冰川流域径流及其组分变化[J]. 冰川冻土, 2019, 41(6): 1302-1312. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000