1 |
The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017[J]. Nature, 2018, 558(7709): 219 - 222.
|
2 |
Li T, Liu Y, Li T, et al. Antarctic surface ice velocity retrieval from MODIS-Based mosaic of Antarctica (MOA)[J]. Remote Sensing, 2018, 10(7): 1045 - 1063.
|
3 |
Liu Y, Moore J C, Cheng X, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences, 2015, 112(11): 3263 - 3268.
|
4 |
Li Teng, Cheng Xiao, Liu Yan, et al. An overview of the Ice Sheet Model Intercomparison Project (ISMIP) in CMIP6[J]. Climate Change Research, 2020, 16(2): 255 - 262.
|
|
李腾, 程晓, 刘岩, 等. CMIP6冰盖模式比较计划(ISMIP)概况与评述[J]. 气候变化研究进展, 2020, 16(2): 255 - 262.
|
5 |
Bindschadler R A, Nowicki S, Abe-Ouchi A, et al. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)[J]. Journal of Glaciology, 2013, 59(214): 195 - 224.
|
6 |
Pattyn F, Perichon L, Durand G, et al. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison[J]. Journal of Glaciology, 2013, 59(215): 410 - 422.
|
7 |
Li Huilin, Li Zhongqin, Shen Yongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 201 - 208.
|
|
李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201 - 208.
|
8 |
Zhou Zaiming, Li Zhognqin, Li Huilin, et al. The flow velocity features and dynamic simulation of the Glacier No.1 at the Headwaters of Urumqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 55 - 61.
|
|
周在明, 李忠勤, 李慧林, 等. 天山乌鲁木齐河源区1号冰川运动速度特征及其动力学模拟[J]. 冰川冻土, 2009, 31(1): 55 - 61.
|
9 |
Tang Xueyuan, Zhang Zhanhai, Sun Bo. Progress and prospect in numerical modelling of the Antarctic Ice-Sheet[J]. Chinese Journal of Polar Research, 2006, 18(4): 290 - 300.
|
|
唐学远, 张占海, 孙波. 南极冰盖数值模拟研究进展与展望 [J]. 极地研究, 2006, 18(4): 290 - 300.
|
10 |
Tang Xueyuan, Sun Bo, Zhang Zhanhai, et al. GLIMMER Antarctic Ice Sheet Model, an experimental research of moving boundary condition[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 905 - 913.
|
|
唐学远, 孙波, 张占海, 等. 南极冰盖 GLIMMER 模式移动边界试验研究 [J]. 冰川冻土, 2007, 29(6): 905 - 913.
|
11 |
Ji Qingyuan, Wang Bangbing, Sun Bo. Applicability PISM for velocity analysis of the Amery Ice Shelf, East Antarctica[J]. Chinese Journal of Polar Research, 2015, 27(3): 229 - 236.
|
|
季青原, 王帮兵, 孙波. PISM 冰盖模式对Amery冰架流速场模拟的适用性[J]. 极地研究, 2015, 27(3): 229 - 236.
|
12 |
Zhang Liangfu, Tang Xueyuan, Yang Shuhu. Numerical simulations of East Antarctic Ice Sheet based on the Elmer/Ice Model[J]. Chinese Journal of Polar Research, 2017, 29(3): 390 - 398.
|
|
张良甫, 唐学远, 杨树瑚, 等. 基于Elmer/Ice冰盖模型的南极Gamburtsev山脉Lambert冰流区域的数值模拟研究[J]. 极地研究, 2017, 29(3): 390 - 398.
|
13 |
Williams M J, Grosfeld K, Warner R C, et al. Ocean circulation and ice-ocean interaction beneath the Amery Ice Shelf, Antarctica[J]. Journal of Geophysical Research: Oceans, 2001, 106(C10): 22383 - 22399.
|
14 |
Gong Y, Cornford S L, Payne A J. Modelling the response of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries[J]. The Cryosphere, 2014, 8(3): 1057 - 68.
|
15 |
Gudmundsson G H, Krug J, Durand G, et al. The stability of grounding lines on retrograde slopes[J]. The Cryosphere, 2012, 6(6): 1497 - 1505.
|
16 |
Levermann A, Winkelmann R, Albrecht T, et al. Projecting Antarctic’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)[J]. Earth System Dynamics, 2020, 11(1): 35 - 76.
|
17 |
Wang Chenghai, Cheng Rong, Zhao Wen, et al. Research progress on the glacial dynamics models[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 1 - 9.
|
|
王澄海, 程蓉, 赵文, 等. 冰川动力学模式模型进展及研究[J]. 冰川冻土, 2019, 41(4): 1 - 9.
|
18 |
Yu J, Liu H, Jezek K C, et al. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier-Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): 1 - 16.
|
19 |
Shi Jiuxin. A review of ice shelf-ocean interaction in Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(3): 287 - 302.
|
|
史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3): 287 - 302.
|
20 |
Tang Chengjia, Li Yuansheng, Chen Zhenlou, et al. A review on studies of Antarctic Shelves and advances in Chinese research on Amery Ice Shelf[J]. Chinese Journal of Polar Research, 2008, 20(3): 265 - 274.
|
|
唐承佳, 李院生, 陈振楼, 等. 南极冰架研究现状与埃默里冰架研究展望[J]. 极地研究, 2008, 20(3): 265 - 274.
|
21 |
Zhao C, Cheng X, Hui F, et al. Monitoring the Amery Ice Shelf front during 2004-2012 using ENVISAT ASAR data[J]. Adv Polar Sci, 2013, 24(2): 133 - 137.
|
22 |
Teng L, Yan L, Xiao C. Recent and imminent calving events do little to impair Amery ice shelf’s stability[J]. Acta Oceanologica Sinica, 2020, 42(5): 168 - 170.
|
23 |
Zhou C, Liang Q, Chen Y, et al. Mass balance assessment of the Amery Ice Shelf Basin, East Antarctica[J]. Earth and Space Science, 2019, 6(10): 1987 - 1999.
|
24 |
Gudmundsson G. Ice-shelf buttressing and the stability of marine ice sheets[J]. The Cryosphere, 2013, 7(2): 647 - 655.
|
25 |
Bueler E, Brown J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3): 1 - 21.
|
26 |
Geuzaine C, Remacle J. Gmsh: A 3-D finite element mesh generator with built-in pre-and postprocessing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309 - 1331.
|
27 |
Gudmundsson G H, De Rydt J, Nagler T. Five decades of strong temporal variability in the flow of Brunt Ice Shelf, Antarctica[J]. Journal of Glaciology, 2017, 63(237): 164 - 175.
|
28 |
Reese R, Gudmundsson G H, Levermann A, et al. The far reach of ice-shelf thinning in Antarctica[J]. Nature Climate Change, 2018, 8(1): 53 - 59.
|
29 |
De Rydt J, Gudmundsson H, Nagler T, et al. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica[J]. The Cryosphere, 2018, 12(2): 505 - 520.
|
30 |
Rathmann N, Hvidberg C, Solgaard A, et al. Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland[J]. Geophysical Research Letters, 2017, 44(19): 9805 - 9814.
|
31 |
Zwally H, Jay M B G, Beckley M A, et al. Antarctic and Greenland drainage systems[EB/OL]. (2020-02-20) [2020-03-12]. .
|
32 |
Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica[J]. The Cryosphere, 2013, 7(1): 375-393.
|
33 |
Howat I M, Porter C, Smith B E, et al. The reference elevation model of Antarctica[J]. Cryosphere, 2019, 13(2): 665 - 674.
|
34 |
Van Wessem J M, Van de Berg W J, Noël B P Y, et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979-2016)[J]. The Cryosphere, 2017, 12(4): 1479 - 1498.
|
35 |
Wen J, Wang Y, Wang W, et al. Basal melting and freezing under the Amery Ice Shelf, East Antarctica[J]. Journal of Glaciology, 2010, 56(195): 81 - 90.
|
36 |
Mouginot J, Rignot E, Scheuchl B, et al. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 Data[J]. Remote Sensing, 2017, 9(4): 364 - 373.
|
37 |
King M A, Coleman R, Freemantle A J, et al. A 4-decade record of elevation change of the Amery Ice Shelf, East Antarctica[J]. Journal of Geophysical Research, 2009, 114(F1): 1 - 13.
|
38 |
Scambos T, Haran T, Fahnestock M, et al. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size[J]. Remote Sensing of Environment, 2007, 111(2-3): 242 - 257.
|
39 |
Pittard M L, Galton-Fenzi B K, Roberts J L, et al. Organization of ice flow by localized regions of elevated geothermal heat flux[J]. Geophysical Research Letters, 2016, 43(7): 3342 - 3350.
|
40 |
Morlighem M, Rignot E, Binder T, et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet[J]. Nature Geoscience, 2020, 13(2): 132 - 137.
|
41 |
Goelzer H, Nowicki S, Edwards T, et al. Design and results of the ice sheet model initialisation initMIP-Greenland: An ISMIP6 intercomparison[J]. The Cryosphere, 2018, 12(4): 1433 - 1460.
|