X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索

冰川冻土 ›› 2019, Vol. 41 ›› Issue (2): 282-292.doi: 10.7522/j.issn.1000-0240.2019.0106

• 冰冻圈与全球变化 • 上一篇    下一篇

祁连山西段冰川区与非冰川区气温梯度年内变化特征

晋子振1,2, 秦翔1, 孙维君3, 陈记祖1, 张晓鹏1,2, 刘宇硕1, 李延召1,2   

  1. 1. 中国科学院 西北生态环境资源研究院 冰冻圈科学国家重点实验室 祁连山冰川与生态环境综合观测研究站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 山东师范大学 地理与环境学院, 山东 济南 250014
  • 收稿日期:2018-06-10 修回日期:2019-03-21 出版日期:2019-04-25 发布日期:2019-05-18
  • 通讯作者: 秦翔,E-mail:qinxiang@lzb.ac.cn. E-mail:qinxiang@lzb.ac.cn
  • 作者简介:晋子振(1993-),男,山西洪洞人,2016年在忻州师范学院获学士学位,现为中国科学院西北生态环境资源研究院在读硕士研究生,从事水文生态学研究.E-mail:1114347243@qq.com
  • 基金资助:
    甘肃省自然科学基金重大项目(18JR4RA002);中国科学院战略性先导科技专项(A类)(XDA20020102);冰冻圈科学国家重点实验室自主课题(SKLCS-ZZ-2018)资助

Monthly variations of temperature gradient in glacierized and non-glacierized areas of the western Qilian Mountains

JIN Zizhen1,2, QIN Xiang1, SUN Weijun3, CHEN Jizu1, ZHANG Xiaopeng1,2, LIU Yushuo1, LI Yanzhao1,2   

  1. 1. Qilian Shan Station of Glaciology and Ecologic Environment, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Geography and Environment, Shandong Normal University, Jinan 250014, China
  • Received:2018-06-10 Revised:2019-03-21 Online:2019-04-25 Published:2019-05-18

摘要: 为研究冰川区与非冰川区不同下垫面对气温梯度的影响。本文利用祁连山老虎沟流域4 180 m, 4 550 m和5 040 m处的三个气象站及肃南、肃北、托勒、玉门、酒泉、瓜州、敦煌等七个国家气象站2011-2013年的日平均气温资料,分析了祁连山西段冰川区与非冰川区年内气温梯度特征,并结合相应时段的降水资料以及其他气象因素对其变化特征做了分析。结果表明:(1)在非冰川区,气温梯度随海拔上升而增大,且有明显的月际波动特征,年内梯度呈现先减后增的趋势,夏季最大,冬季最小,年气温梯度为0.50℃·(100m)-1;(2)在冰川区,气温梯度呈现先增后减的趋势,夏季最小,冬季最大,年气温梯度为0.61℃·(100m)-1,日内变化特征为白天气温梯度变化幅度大但值较小,夜间变化幅度小,稳定在0.83℃·(100m)-1左右,日内平均气温梯度为0.49℃·(100m)-1;(3)冰川区与非冰川区年内温度梯度与降水梯度呈相反的变化趋势,表明降水对气温梯度变化有一定的影响。(4)由于非冰川区与冰川区下垫面不同,气温梯度呈相反的年内变化趋势,在由非冰川区气温推算冰面气温时必须考虑温跃值影响,老虎沟12号冰川年平均温跃值为1.30℃。

关键词: 祁连山, 气温, 降水, 温跃值, 气温梯度

Abstract: In order to study the effect of underlying surfaces on the temperature gradient in glacierized and non-glacierized areas, in this paper, the daily mean temperature data of three meteorological stations at 4 180 m, 4 550 m and 5 040 m in the Laohugou basin of Qilian Mountains, along with seven national meteorological stations (Sunan, Subei, Toler, Yumen, Jiuquan, Guazhou and Dunhuang) are used to analyze the characteristics of annual temperature gradient in glacierized area and non-glacierized area in the western Qilian Mountains, combined with precipitation and other meteorological data. It is found that:(1) in the non-glacierized area, the temperature gradient increases with elevation and with obvious monthly fluctuation. Temperature gradient presents the trend of decreasing firstly and then increasing, with a maximum in summer and a minimum in winter, and an annual mean temperature gradient of 0.50℃·(100m)-1. (2) In the glacierized area, the temperature gradient presents the trend of increasing first and then decreasing, with a minimum in summer, and a maximum in winter, and an annual mean temperature gradient of 0.61℃·(100m)-1. The variation of daily temperature gradient is large in daytime with an average temperature gradient of 0.49℃·(100m)-1 and stable at 0.83℃·(100m)-1 at night without obvious change. (3) The annual temperature gradient has opposite to the precipitation gradient in glacierized area and non-glacierized area, indicating that precipitation has a certain effect on the change of temperature gradient. (4) Due to the difference of underlying surface between the non-glacierized area and the glacierized area, the temperature gradient has the opposite variation trend in the year. The temperature jump must be considered when the temperature on the ice surface is calculated from the non-glacierized area. The annual average temperature jump on the Laohugou Glacier No.12 is 1.30℃.

Key words: Qilian Mountains, temperature, precipitation, temperature jump, temperature gradient

中图分类号: 

  • P642.2