[1] Qin Dahe,Yao Tandong,Ding Yongjian,et al. Glossary of cryospheric science[M]. Beijing:China Meteorological Press, 2016.[秦大河,姚檀栋,丁永建,等. 冰冻圈科学辞典[M]. 北京:气象出版社,2016.] [2] Zhang T,Barry R G,Knowles K,et al. Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere[J]. Polar Geography,1999,23 (2):132-154. [3] Zimov S A,Schuur E A G,Chapin F S. Permafrost and the global carbon budget[J]. Science,2006,312 (5780):1612-1613. [4] Tarnocai C,Canadell J G,Schuur E A G,et al. Soil organic carbon pools in the northern circumpolar permafrost region[J/OL]. Global Biogeochemical Cycles,2009,23 (2)[2018-1208]. https://www.researchgate.net/publication/228477068. [5] Ping C L,Jastrow J D,Jorgenson M T,et al. Permafrost soils and carbon cycling[J]. Soil,2015,1 (1):147-171. [6] Grosse G,Harden J,Turetsky M,et al. Vulnerability of highlatitude soil organic carbon in North America to disturbance[J/OL]. Journal of Geophysical Research:Biogeosciences, 2011,116 (G4)[2018-12-08]. https://www.researchgate.net/publication/230174885. [7] Fountain A G,Campbell J L,Schuur E A G,et al. The disappearing cryosphere:impacts and ecosystem responses to rapid cryosphere loss[J]. BioScience,2012,62 (4):405-415. [8] Schaefer K,Liu L,Parsekian A,et al. Remotely sensed active layer thickness (ReSALT)at Barrow,Alaska using interferometric synthetic aperture radar[J]. Remote Sensing,2015,7 (4):3735-3759. [9] Harden J W,Koven C D,Ping C L,et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters,2012,39 (15):51-60. [10] Li Qian. A review of studies on permafrost changes under global warming background[J]. Jilin Meteorology,2013 (1):25-28.[李倩. 全球变暖背景下冻土变化研究综述[J]. 吉林气象,2013 (1):25-28.] [11] Zhao Lin,Wu Tonghua,Xie Changwei,et al. Support geoscience research,environmental management,and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet Plateau,China[J]. Bulletin of Chinese Academy of Sciences,2017,32 (10):1159-1168.[赵林,吴通华,谢昌卫,等. 多年冻土调查和监测为青藏高原地球科学研究、环境保护和工程建设提供科学支撑[J]. 中国科学院院刊,2017,32 (10):1159-1168.] [12] Brown J,Hinkel K M,Nelson F E. The circumpolar active layer monitoring (CALM)program:research designs and initial results[J]. Polar Geography,2000,24 (3):166-258. [13] Anisimov O,Reneva S. Permafrost and change climate:the Russian perspective[J]. AMBIO:A Journal of the Hunman Environment,2006,35 (4):169-175. [14] Romanovsky V E,Smith S L,Christiansen H H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009:a synthesis[J]. Permafrost and Periglacial Processes,2010,21 (2):106-116. [15] Schuur E A G,McGuire A D,Schädel C,et al. Climate change and the permafrost carbon feedback[J]. Nature,2015, 520 (7546):171. [16] Jones M C,Harden J,O'Donnell J,et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands[J]. Global Change Biology,2017,23 (3):1109-1127. [17] Carey J C,Tang J,Templer P H,et al. Temperature response of soil respiration largely unaltered with experimental warming[J]. Proceedings of the National Academy of Sciences,2016, 113 (48):13797-13802. [18] Li Zhijun,Zhang Zhanhai. Sea ice investigation in CHIARE 2003 and future Arctic ice research tactic[J]. Chinese Journal of Polar Research,2004,16 (3):202-210.[李志军,张占海. 中国2003年北极海冰调查及未来北极海冰研究战略[J]. 极地研究,2004,16 (3):202-210.] [19] Xiao Yang. Science and technology and national security:the strategic significance of China's Arctic scientific expedition[J]. Journal of International Security Studies,2015,33 (6):106-131.[肖洋. 地缘科技学与国家安全:中国北极科考的战略深意[J]. 国际安全研究,2015,33 (6):106-131.] [20] Wang Xu,Lin Zheng,Zhang Zhi,et al. Modelling the spatial distribution of lake surface water temperature of the thaw lakes in Arctic coastal plain using geographically weighted regression model[J]. Geomatics and Information Science of Wuhan University,2016,41 (7):918-924.[王旭,林征,张志,等. 基于GWR模型的北极滨海平原融冻湖表面温度空间分布模拟[J]. 武汉大学学报 (信息科学版),2016,41 (7):918-924.] [21] Piao S,Fang J,Ciais P,et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458 (7241):1009. [22] Ding Jinzhi,Li Fei,Yang Guibiao,et al. The permafrost carbon inventory on the Tibetan Plateau:a new evaluation using deep sediment cores[J]. Global Change Biology,2016,22 (8):2688-2701. [23] Schaefer K,Lantuit H,Romanovsky V E,et al. The impact of the permafrost carbon feedback on global climate[J/OL]. Environmental Research Letters,2014,9 (8)[20181208]. https://www.researchgate.net/publication/264828451. [24] Margesin R. Chapter 1:Arctic permafrost soils[M]//Permafrost soils. Berlin:Springer,2009:3-16. [25] Brown J,Ferrians O J,Jr,Heginbottom J A,et al. Circum Arctic map of permafrost and ground-ice conditions[R]. Washington,D. C.:U. S. Geological Survey,1997. [26] Qin Yu,Yi Shuhua,Li Naijie,et al. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica,2012,21 (6):275-285.[秦彧,宜树华,李乃杰,等. 青藏高原草地生态系统碳循环研究进展[J]. 草业学报,2012,21 (6):275-285.] [27] Ping C L,Michaelson G J,Jorgenson M T,et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience,2008,1 (9):615-619. [28] Everett K R,Brown J. Some recent trends in the physical and chemical characterization and mapping of tundra soils,Arctic slope of Alaska[J]. Soil Science,1982,133 (5):264-280. [29] Post W M,Emanuel W R,Zinke P J,et al. Soil carbon pools and world life zones[J]. Nature,1982,298 (5870):156-159. [30] Tarnocai C,Kimble J,Broll G. Determining carbon stocks in Cryosols using the Northern and Mid Latitudes Soil Database[M]//Permafrost. Lisse, the Netherlands:Swets and Zeitlinger,2003:1129-1134. [31] Kanevskiy M,Shur Y,Fortier D,et al. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure[J]. Quaternary Research, 2011,75 (3):584-596. [32] Hugelius G,Strauss J,Zubrzycki S,et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences Discussions, 2014,11 (23):6573-6593. [33] Schirrmeister L,Grosse G,Wetterich S,et al. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic[J/OL]. Journal of Geophysical Research:Biogeosciences,2011,116 (G2)[2018-12-08]. https://www.researchgate.net/publication/230174895. [34] Horwath Burnham J,Sletten R S. Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores[J/OL]. Global Biogeochemical Cycles, 2010,24 (3)[20181208]. https://www.researchgate.net/publication/236896465. [35] Boike J,Langer M,Lantuit H,et al. Permafrost:physical aspects,carbon cycling,databases and uncertainties[M]//Recarbonization of the biosphere. Dordrecht, the Netherlands:Springer,2012:159-185. [36] Qin Dahe. Introduction to cryospheric science[J]. Beijing:Science Press,2017.[秦大河. 冰冻圈科学概论[J]. 北京:科学出版社,2017.] [37] Jin Huijun,Cheng Guodong. Methane emission in permafrost regions[J]. Advances in Earth Science,1997,12 (3):276-283.[金会军,程国栋. 冻土区甲烷排放研究进展[J]. 地球科学进展,1997,12 (3):276-283.] [38] Wang P,Zhang X,Zhu Y,et al. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai,Northwest China[J]. Environmental Science:Processes and Impacts,2014,16 (12):2711-2720. [39] Shakhova N,Semiletov I,Leifer I,et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf[J/OL]. Journal of Geophysical Research:Oceans,2010,115 (C8)[2018-12-08]. https://www.researchgate.net/publication/251434227. [40] Olsen A,Anderson L G,Heinze C. Arctic carbon cycle:patterns,impacts and possible changes[M]//The new Arctic. Cham,Switzerland:Springer,2015:95-115. [41] Shakhova N,Semiletov I,Leifer I,et al. Ebullition and storminduced methane release from the East Siberian Arctic Shelf[J]. Nature Geoscience,2013,7 (1):64-67. [42] Semiletov I P,Shakhova N E,Sergienko V I,et al. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system[J/OL]. Environmental Research Letters,2012, 7 (1)[2018-12-08]. http://iopscience.iop.org/article/10.1088/1748-9326/7/1/015201/meta. [43] Petrenko V V,Etheridge D M,Weiss R F,et al. Methane from the East Siberian Arctic Shelf[J]. Science,2010,329 (5996):1146-1147. [44] Dmitrenko I A,Kirillov S A,Tremblay L B,et al. Recent changes in shelf hydrography in the Siberian Arctic:potential for subsea permafrost instability[J/OL]. Journal of Geophysical Research:Oceans,2011,116 (C10)[2018-12-08]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JC007218. [45] Schuur E A G,Vogel J G,Crummer K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature,2009,459 (7246):556-559. [46] Archer D. A model of the methane cycle,permafrost,and hydrology of the Siberian continental margin[J]. Biogeosciences, 2015,12 (10):2953-2974. [47] Ma Wei,Jin Huijun. Permafrost on a warming planet:summary review of the Ninth International Conference on Permafrost in 2008[J]. Journal of Glaciology and Geocryology,2008,30 (5):843-854.[马巍,金会军. 正在变暖的地球上的多年冻土:2008年第九届国际冻土大会 (NICOP)综述[J]. 冰川冻土,2008,30 (5):843-854.] [48] Walker H J. Arctic,coastal geomorphology[M]//Schwartz M. Encyclopedia of coastal science.[S. l.]:Springer Netherlands,2005:49-55. [49] Lantuit H,Overduin P P,Couture N,et al. The Arctic coastal dynamics database:a new classification scheme and statistics on Arctic permafrost coastlines[J]. Estuaries and Coasts, 2012,35 (2):383-400. [50] Lantuit H,Overduin P P,Wetterich S. Recent progress regarding permafrost coasts[J]. Permafrost and Periglacial Processes,2013,24 (2):120-130. [51] Wobus C,Anderson R,Overeem I,et al. Thermal erosion of a permafrost coastline:improving process based models using time-lapse photography[J]. Arctic,Antarctic,and Alpine Research,2011,43 (3):474-484. [52] Günther F,Overduin P P,Sandakov A V,et al. Short and long term thermo erosion of ice rich permafrost coasts in the Laptev Sea region[J]. Biogeosciences,2013,10 (6):4297-4318. [53] Vonk J E,Sánchez-García L,Van Dongen B E,et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature,2012,489 (7414):137-140. [54] Wegner C,Bennett K E,de Vernal A,et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene[J]. Polar Research,2015, 34 (9):2380-2385. [55] McGuire A D, Anderson L G, Christensen T R, et al. Sensitivity of the carbon cycle in the Arctic to climate change[J]. Ecological Monographs,2009,79 (4):523-555. [56] Abbott B W,Jones J B,Schuur E A G,et al. Biomass offsets little or none of permafrost carbon release from soils,streams, and wildfire:an expert assessment[J/OL]. Environmental Research Letters,2016,11 (3)[2018-12-08]. http://iopscience.iop.org/article/10.1088/1748-9326/11/3/034014/meta. [57] Callaghan T V,Björn L O,Chernov Y,et al. Effects on the function of arctic ecosystems in the short and long term perspectives[J]. AMBIO:A Journal of the Human Environment, 2004,33 (7):448-458. [58] Qian H,Joseph R,Zeng N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections[J]. Global Change Biology,2010,16 (2):641-656. [59] Wang Haibo,Ma Mingguo,Wang Xufeng. Advances in the studies of the interaction between terrestrial ecosystem carbon cycle and freezing-thawing process[J]. Remote Sensing Technology and Application,2014,29 (3):369-377.[王海波, 马明国,王旭峰. 冻融过程与陆地生态系统碳循环的相互关系研究进展[J]. 遥感技术与应用,2014,29 (3):369-377.] [60] Zhang Huimin,Jia Zhongjun. Soil microbiomes modulate distinct patterns of soil respiration and methane oxidation in Arctic active layer and permafrost[J]. Acta Microbiologica Sinica, 2017,57 (6):839-855.[张慧敏,贾仲君. 北极冻土区活跃层与永冻层土壤微生物组的空间分异[J]. 微生物学报, 2017,57 (6):839-855.] [61] Zhang W,Jansson C,Miller P A,et al. Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics[J]. Biogeosciences,2014,11 (19):5503-5519. [62] Fahnestock J T,Jones M H,Welker J M. Wintertime CO2 efflux from Arctic soils:implications for annual carbon budgets[J]. Global Biogeochemical Cycles,1999,13 (3):775-779. [63] Chen Ji. The responses of ecosystem carbon exchanges to experimental warming and grazing exclusion in a meadow grassland on the northern shore of Qinghai Lake,China[D]. Xi'an:Institute of Earth Environment,Chinese Academy of Sciences, 2015.[陈骥. 模拟增温和围栏封育对青海湖北岸高寒草甸化草原生态系统碳交换影响[D]. 西安:中国科学院地球环境研究所,2015.] [64] Katayanagi N,Fumoto T,Hayano M,et al. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model[J]. Science of the Total Environment,2016,547:429-440. [65] McGuire A D,Genet H,Lyu Z,et al. Assessing historical and projected carbon balance of Alaska:a synthesis of results and policy/management implications[J]. Ecological Applications, 2018,28 (6):1396-1412. [66] McGuire A D,Lawrence D M,Koven C,et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change[J]. Proceedings of the National Academy of Sciences,2018,115 (15):3882-3887. [67] Repo M E,Susiluoto S,Lind S E,et al. Large N2O emissions from cryoturbated peat soil in tundra[J]. Nature Geoscience, 2009,2 (3):189-192. [68] Hursh A,Ballantyne A,Cooper L,et al. The sensitivity of soil respiration to soil temperature,moisture,and carbon supply at the global scale[J]. Global Change Biology,2017,23 (5):2090-2103. [69] Parker T C,Subke J A,Wookey P A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline[J]. Global Change Biology, 2015,21 (5):2070-2081. [70] Sturm M,Schimel J,Michaelson G,et al. Winter biological processes could help convert Arctic tundra to shrubland[J]. AIBS Bulletin,2005,55 (1):17-26. [71] Chapman W L,Walsh J E. Recent variations of sea ice and air temperature in high latitudes[J]. Bulletin of the American Meteorological Society,1993,74 (1):33-48. [72] Maxwell B. Recent climate patterns in the Arctic[M]//Global change and Arctic terrestrial ecosystems. New York:Springer, 1997:21-46. [73] Kicklighter D W,Hayes D J,McClelland J W,et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks[J]. Ecological Applications,2013,23 (8):1817-1836. [74] Raymond P A,McClelland J W,Holmes R M,et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean:a carbon isotopic study of the five largest Arctic rivers[J/OL]. Global Biogeochemical Cycles,2007,21 (4)[20181208].https://www.researchgate.net/publication/228366719. [75] Larry H,Yoshikawa K,Fukuda M,et al. Wildfire in the subarctic boreal forests ecosystem impacts and response to a warming climate[J]. Tohoku Geophysical Journal,2001,36 (2):230-232. [76] Loranty M M,Lieberman-Cribbin W,Berner L T,et al. Spatial variation in vegetation productivity trends, fire disturbance,and soil carbon across arctic-boreal permafrost ecosystems[J/OL]. Environmental Research Letters,2016,11 (9)[20181208]. https://www.researchgate.net/publication/308086823. [77] Lindgren A,Hugelius G,Kuhry P. Extensive loss of past permafrost carbon but a net accumulation into present day soils[J]. Nature,2018,560 (7717):219-222. [78] Liu Jiyuan,Yu Guirui,Wang Shaoqiang,et al. A method of geo-information science for studying carbon cycle and its mechanism of terrestrial ecosystems[J]. Geographical Research, 2003,22 (4):397-405.[刘纪远,于贵瑞,王绍强,等. 陆地生态系统碳循环及其机理研究的地球信息科学方法初探[J]. 地理研究,2003,22 (4):397-405.] [79] Cramer W,Bondeau A,Woodward F I,et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models[J]. Global Change Biology,2001,7 (4):357-373. [80] Ji J. A climate-vegetation interaction model:simulating physical and biological processes at the surface[J]. Journal of Biogeography,1995,22 (2/3):445-451. [81] Zhuang Q,Romanovsky V E,McGuire A D. Incorporation of a permafrost model into a large-scale ecosystem model:evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics[J]. Journal of Geophysical Research:Atmospheres,2001,106 (D24):33649-33670. [82] White J D,Running S W,Thornton P E,et al. Assessing simulated ecosystem processes for climate variability research at Glacier National Park,USA[J]. Ecological Applications,1998,8 (3):805-823. [83] Nemry B,François L,Warnant P,et al. The seasonality of the CO 2 exchange between the atmosphere and the land biosphere:a study with a global mechanistic vegetation model[J]. Journal of Geophysical Research:Atmospheres,1996,101 (D3):7111-7125. [84] Parton W J,Scurlock J M O,Ojima D S,et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cycles,1993,7 (4):785-809. [85] Prince S D,Goward S N. Global primary production:a remote sensing approach[J]. Journal of Biogeography,1995,22 (4/5):815-835. [86] Foley J A,Prentice I C,Ramankutty N,et al. An integrated biosphere model of land surface processes,terrestrial carbon balance,and vegetation dynamics[J]. Global Biogeochemical Cycles,1996,10 (4):603-628. [87] Sitch S,Prentice I C,Smith B,et al. LPJ:a coupled model of vegetation dynamics and the terrestrial carbon cycle[D]. Lund, Sweden:Lund University,2000. [88] Aber J D,Ollinger S V,Federer C A,et al. Predicting the effects of climate change on water yield and forest production in the northeastern United States[J]. Climate Research,1995,5 (3):207-222. [89] Sellers P J,Randall D A,Collatz G J,et al. A revised land surface parameterization (SiB2)for atmospheric GCMs:Part I:model formulation[J]. Journal of Climate,1996,9 (4):676-705. [90] Ducoudré N I,Laval K,Perrier A. SECHIBA,a new set of parameterizations of the hydrologic exchanges at the land atmosphere interface within the LMD atmospheric general circulation model[J]. Journal of Climate,1993,6 (2):248-273. [91] Li H,Shi K,Xu D. Effects of plant process on soil organic carbon concentration[J]. Chinese Journal of Applied Ecology, 2005,16 (6):1163-1168. [92] Schädel C,Bader M K F,Schuur E A G,et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change,2016, 6 (10):950-953. [93] Knoblauch C,Beer C,Liebner S,et al. Methane production as key to the greenhouse gas budget of thawing permafrost[J]. Nature Climate Change,2018,8 (4):309-312. [94] Burke E J,Hartley I P,Jones C D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing[J]. The Cryosphere,2012,6 (5):1063-1076. [95] Oechel W C,Vourlitis G L,Hastings S J,et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[J]. Nature,2000,406 (6799):978-981. [96] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440 (7081):165-173. [97] Waldrop M P,Wickland K P,Iii R W,et al. Molecular investigations into a globally important carbon pool:permafrost-protected carbon in Alaskan soils[J]. Global Change Biology, 2010,16 (9):2543-2554. [98] Li Dong,Huang Yao,Wu Qin,el al. Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on QinghaiTibetan Plateau[J]. Acta Prataculturae Sinica,2010,19 (2):160-168.[李东,黄耀,吴琴,等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究[J]. 草业学报,2010,19 (2):160-168.] |