[1] Li Peiji. Preliminary evaluation of seasonal snow resources in China[J]. Journal of Geographical Sciences, 1988(2):108-119.[李培基. 中国季节积雪资源的初步评价[J]. 地理学报, 1988(2):108-119.] [2] Zhang Tingjun, Zhong Wei. Snow distribution and its type division in Eurasia[J]. Journal of Glaciology and Geocryology, 2014, 36(3):481-490.[张廷军, 钟歆玥. 欧亚大陆积雪分布及其类型划分[J]. 冰川冻土, 2014, 36(3):481-490.] [3] Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature (London), 2005, 438(7066):303-309. [4] Lü Y, Wu D, Sun Z. Effect of black carbon concentration on the reflection property of snow:a comparison with model results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11):6823-6840. [5] Da Ronco P, De Michele C, Montesarchio M, et al. Comparing COSMO-CLM simulations and MODIS data of snow cover extent and distribution over Italian Alps[J]. Climate Dynamics, 2016, 47(12):3955-3977. [6] Hadley O L, Kirchstetter T W. Black-carbon reduction of snow albedo[J]. Nature Climate Change, 2012, 2(6):437-440. [7] Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system:A scientific assessment[J]. Journal of Geophysical Research Atmospheres, 2013, 118(11):5380-5552. [8] Chen Wenqian, Ding Jianli, Zhang Wei, et al. Study on black carbon aerosol in seasonal snow in Xinjiang arid area[J]. China Environmental Science, 2019, 39(1):83-91.[陈文倩, 丁建丽, 张喆, 等. 新疆干旱区季节性积雪中黑碳气溶胶研究[J]. 中国环境科学, 2019, 39(1):83-91.] [9] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences, 2004, 101(2):423-428. [10] Doherty S J, Grenfell T C, Forsstr M S, et al. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(11):5553-5569. [11] Allen S K, Plattner G K, Nauels A, et al. Climate Change 2013:The Physical Science Basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[J]. Computational Geometry, 2007, 18(2):95-123. [12] Ming J, Xiao C, Du Z, et al. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance[J]. Advances in Water Resources, 2013, 55:80-87. [13] Ming J, Xiao C, Cachier H, et al. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research, 2009, 92(1):114-123. [14] Qian Y, Wang H, Zhang R, et al. A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China[J]. Environmental Research Letters, 2014, 9(6):1-10. [15] Zhang Y, Kang S, Sprenger M, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau[J]. The Cryosphere, 2018, 12(2):413-431. [16] Yasunari T J, Koster R D, Lau W K M, et al. Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(11):5485-5503. [17] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences, 2004, 101(2):423-428. [18] Warren S G, Wiscombe W J. A Model for the Spectral Albedo of Snow. II:Snow Containing Atmospheric Aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12):2734-2745. [19] He C, Takano Y, Liou K N, et al. Impact of snow grain shape and black carbon-snow internal mixing on snow optical properties:parameterizations for climate models[J]. Journal of Climate, 2017, 30(24):10019-10036. [20] He C, Flanner M G, Chen F, et al. Black carbon-induced snow albedo reduction over the Tibetan Plateau:uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model[J]. Atmospheric Chemistry and Physics, 2018, 18(15):11507-11527. [21] Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change[J]. Geophysical Research Letters, 2006, 330(3):155-170. [22] Hao Xiaohua, Wang Jie, Wang Jian, et al. Spectral characteristics and inversion of different snow particle sizes in Northern Xinjiang[J]. Spectroscopy and Spectral Analysis, 2013, 33(1):190-195.[郝晓华, 王杰, 王建, 等. 北疆地区不同雪粒径光谱特征观测及反演研究[J]. 光谱学与光谱分析, 2013, 33(1):190-195.] [23] König M, Winther J, Isaksson E. Measuring snow and glacier ice properties from satellite[J]. Reviews of Geophysics, 2001, 39(1):1. [24] Warren, Stephen G. Can black carbon in snow be detected by remote sensing?[J]. Journal of Geophysical Research Atmospheres, 2013, 118(2):779-786. [25] Painter T H, Bryant A C, Mckenzie Skiles S. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data[J]. Geophysical Research Letters, 2012, 39(17):17502. [26] Wiscombe W J, Warren S G. A Model for the Spectral Albedo of Snow. I:Pure Snow[J]. Journal of Atmospheric Sciences, 1980, 37(12):2712-2733. [27] Aoki T, Fukabori M, et al. Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface[J]. Journal of Geophysical Research:Atmospheres, 2000, 105(D8):10219-10236. [28] Kokhanovsky A, Zege E P. Scattering optics of snow[J]. Appl Opt, 2004, 43(7):1589-1602. [29] Zege E, Katsev I, Malinka A, et al. New algorithm to retrieve the effective snow grain size and pollution amount from satellite data[J]. Annals of Glaciology, 2008, 49(1):139-144. [30] Zege E P, Katsev I L, Malinka A V, et al. Algorithm for retrieval of the effective snow grain size and pollution amount from satellite measurements[J]. Remote Sensing of Environment, 2011, 115(10):2674-2685. [31] Wiebe H, Heygster G, Zege E, et al. Snow grain size retrieval SGSP from optical satellite data:Validation with ground measurements and detection of snow fall events[J]. Remote sensing of environment, 2013, 128:11-20. [32] Qian Y, Gustafson Jr W I, Leung L R, et al. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on weather research and forecasting chemistry and regional climate simulations[J]. Journal of Geophysical Research:Atmospheres, 2009, 114:1-19. [33] Zhuang Xiaocui, Guo Cheng, Zhao Zhengbo, et al. Analysis of snow cover change in Altay Region, Xinjiang[J]. Journal of Arid Meteorology, 2010, 28(2):190-197.[庄晓翠, 郭城, 赵正波,等. 新疆阿勒泰地区积雪变化分析[J]. 干旱气象, 2010, 28(2):190-197.] [34] Guo Lingpeng, Li Lanhai, Xu Junrong, et al. Simultaneous observation experiments of snowmelt rate and soil moisture under temperature change conditions[J]. Arid Zone Research, 2012, 29(5):890-897.[郭玲鹏, 李兰海, 徐俊荣, 等. 气温变化条件下融雪速率和土壤水分变化的同步观测试验[J]. 干旱区研究, 2012, 29(5):890-897.] [35] Li Yang, Li Jiangang, Liu Yan, et al. Characteristics analysis of snow and frozen soil changes in Northern Xinjiang[J]. Soil and Water Conservation Research, 2015, 22(5):342-348.[李杨, 李建刚, 刘艳, 等. 北疆地区积雪与冻土变化的特征分析[J]. 水土保持研究, 2015, 22(5):342-348.] [36] Yang Tao, Huang Farong, Li Qian, et al. Temporal and spatial variations of NDVI in vegetation growing season in Northern Xinjiang and its relationship with snowfall in winter[J]. Remote Sensing Technology and Application, 2017, 32(6):1132-1140.[杨涛, 黄法融, 李倩, 等. 新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J]. 遥感技术与应用, 2017, 32(6):1132-1140.] [37] Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. Cryosphere, 2016, 10(1/2/3/4/5):2453-2463. [38] Barnes W L, Pagano T S, Salomonson V V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1088-1100. [39] Salomonson V V, Appel I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7):1747-1756. [40] Ye H, Zhang R, Shi J, et al. Black carbon in seasonal snow across northern Xinjiang in northwestern China[J]. Environmental Research Letters, 2012, 7(4):1-9. [41] Clarke A D, Noone K J. Soot in the Arctic snowpack:A cause for perturbations in radiative transfer[J]. Atmospheric Environment (1967), 1985, 19(12):2045-2053. [42] Huang J, Fu Q, Zhang W, et al. Dust and black carbon in seasonal snow across northern China[J]. Bulletin of the American Meteorological Society, 2011, 92(2):175-181. [43] Zuanon N. IceCube, A portable and reliable instruments for snow specific surface area measurement in the field[C]//International Snow Science Workshop Grenoble-Chamonix Mont-Blance-2013 Proceedings, 2013:1020-1023. [44] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote sensing of Environment, 2002, 83(1/2):181-194. [45] Salomonson V V, Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004, 89(3):351-360. [46] Kokhanovsky A, Rozanov V. The retrieval of snow characteristics from optical measurements[M]//Light Scattering Reviews, Vol. 6. Springer, Berlin, Heidelberg, 2012:289-331. [47] Kokhanovsky A A, Macke A. Integral light-scattering and absorption characteristics of large, nonspherical particles[J]. Applied optics, 1997, 36(33):8785-8790. [48] Fierz D C. The 2008 international classification of seasonal snow on the ground[J]. Mon. wea. rev, 2008, 94(4):265-271. [49] Pu W, Wang X, Wei H, et al. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China[J]. Cryosphere, 2017, 11(3):1-59. [50] Ye Hao. Observational study of black carbon in seasonal snow in northern China[D]. Lanzhou:Lanzhou University, 2013.[叶浩. 中国北方地区季节性积雪中黑碳的观测研究[D]. 兰州:兰州大学, 2013.] [51] Pu Wei. Content, source and radiation effects of absorbing particles in seasonal snow in Northern China[D]. Lanzhou:Lanzhou University, 2018.[浦伟. 中国北方地区季节性积雪中吸收性粒子的含量、来源及其辐射效应研究[D]. 兰州:兰州大学, 2018.] [52] Wang X, Doherty S J, Huang J. Black carbon and other light-absorbing impurities in snow across Northern China[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(3):1471-1492. |