1 |
IPCC. Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. New York: Cambridge University Press, 2013.
|
2 |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
|
3 |
Wang Puyu, Li Zhongqin, Li Huilin, et al. Analysis of the relation between glacier volume change and area change in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 9-15.
|
|
王璞玉, 李忠勤, 李慧林, 等. 天山冰储量变化和面积变化关系分析研究[J]. 冰川冻土, 2017, 39(1): 9-15.
|
4 |
Ye Wanhua, Wang Feiteng, Li Zhongqin, et al. Temporal and spatial distributions of the equilibrium line altitudes of the monitoring glaciers in High Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(6): 1459-1469.
|
|
叶万花, 王飞腾, 李忠勤, 等. 高亚洲定位监测冰川平衡线高度时空分布特征[J]. 冰川冻土, 2016, 38(6): 1459-1469.
|
5 |
Liu Chaohai, Xie Zichu, Wang Chunzu. A research on the mass balance processes of Glacier No.1 at the headwaters of the Urumqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 1997, 19(1): 17-24.
|
|
刘潮海, 谢自楚, 王纯足. 天山乌鲁木齐河源1号冰川物质平衡过程研究[J]. 冰川冻土, 1997, 19(1): 17-24.
|
6 |
Neckel N, Kropáček J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J/OL]. Environmental Research Letters, 2014, 9(1) [2019-04-30]. .
|
7 |
Rasmussen L A, Kohler J. Mass balance of three Svalbard glaciers reconstructed back to 1948[J]. Polar Research, 2010, 26(2): 168-174.
|
8 |
Hock R. Temperature index melt modeling in mountain areas[J]. Journal of Hydrology, 2003, 282(1): 104-115.
|
9 |
Huintjes E, Li Huilin, Sauter T, et al. Degree-day modelling of the surface mass balance of Urumqi Glacier No.1, Tian Shan, China[J]. The Cryosphere, 2010, 4: 207-232.
|
10 |
Gabbi J, Carenzo M, Pellicciotti F, et al. A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response[J]. Journal of Glaciology, 2014, 60: 1140-1154.
|
11 |
Hock R, Holmgren B. A distributed surface energy balance model for complex topography and its application to Storglaciären, Sweden[J]. Journal of Glaciology, 2005, 51(172): 25-36.
|
12 |
Plach A, Nisancioglu K H, Le Clec’h S, et al. Eemian Greenland surface mass balance strongly sensitive to SMB model choice[J]. Climate of the Past, 2018, 14(10): 1463-1485.
|
13 |
Yang Wei, Yao Tandong, Guo Xiaofeng, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17): 9579-9594.
|
14 |
Li Shenghai, Yao Tandong, Yang Wei, et al. Glacier energy and mass balance in the inland Tibetan Plateau: seasonal and interannual variability in relation to atmospheric changes[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 6390-6409.
|
15 |
Zhu Meilin, Yao Tandong, Yang Wei, et al. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau[J]. Climate Dynamics, 2017, 50(9/10): 3457-3484.
|
16 |
Huintjes E, Sauter T, Schröter B, et al. Evaluation of a coupled snow and energy balance model for Zhadang Glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(3): 573-590.
|
17 |
Huintjes E, Neckel N, Hochschild V, et al. Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001-2011[J]. Journal of Glaciology, 2015, 61(230): 1048-1061.
|
18 |
Xu Chunhai, Li Zhongqin, Wang Feiteng, et al. Using an ultra-long-range terrestrial laser scanner to monitor the net mass balance of Urumqi Glacier No.1, eastern Tien Shan, China, at the monthly scale[J]. Journal of Glaciology, 2017, 63(241): 792-802.
|
19 |
Li Zhongqin, Shen Yongping, Wang Feiteng, et al. Response of glacier melting to climate change: take Urumqi Glacier No.1 as an example[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 333-342.
|
|
李忠勤, 沈永平, 王飞腾, 等. 冰川消融对气候变化的响应: 以乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 2007, 29(3): 333-342.
|
20 |
Wang Puyu, Li Zhongqin, Li Huilin, et al. Analyses of recent observations of Urumqi Glacier No.1, Chinese Tianshan Mountains[J]. Environmental Earth Sciences, 2016, 75(8): 1-11.
|
21 |
Yue Xiaoying, Zhao Jun, Li Zhongqin, et al. Spatial and temporal variations of the surface albedo and other factors influencing Urumqi Glacier No.1 in Tien Shan, China[J]. Journal of Glaciology, 2017, 63(241): 899-911.
|
22 |
van den Broeke M, van As D, Reijmer C, et al. Assessing and improving the quality of unattended radiation observations in Antarctica[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(9): 1417-1431.
|
23 |
Mölg T, Maussion F, Yang Wei, et al. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier[J]. The Cryosphere, 2012, 6: 1445-1461.
|
24 |
He Xiaobo, Ye Baisheng, Ding Yongjian. Bias correction for precipitation measurement in Tanggula Mountain, Tibetan Plateau[J]. Advances in Water Science, 2009, 20(3): 403-408.
|
|
何晓波, 叶柏生, 丁永建. 青藏高原唐古拉山区降水观测误差修正分析[J]. 水科学进展, 2009, 20(3): 403-408.
|
25 |
Wang Puyu, Li Zhongqin, Li Huilin, et al. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China[J]. Global and Planetary Change, 2017, 159: 11-24.
|
26 |
Thibert E, Vincent C, Blanc R, et al. Instruments and methods glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps[J]. Journal of Glaciology, 2008, 54(186): 522-532.
|
27 |
Zemp M, Jansson P, Holmlund P, et al. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99): Part 2: comparison of glaciological and volumetric mass balances[J]. The Cryosphere, 2010, 20(4): 345-357.
|
28 |
Oerlemans J. Glaciers and climate change[M]. Lisse, the Netherlands: Swets and Zeitlinger, 2001: 148.
|
29 |
Brock B W, Willis I C, Martin M J. Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland[J]. Journal of Glaciology, 2006, 52: 281-297.
|
30 |
Cullen N J, Mölg T, Kaser G, et al. Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data[J]. Annals of Glaciology, 2007, 46: 227-233.
|
31 |
Gromke C, Manes C, Walter B, et al. Aerodynamic roughness length of fresh snow[J]. Boundary Layer Meteorology, 2011, 141: 21-34.
|
32 |
Braithwaite R J. Aerodynamic stability and turbulent sensible heat flux over a melting ice surface, the Greenland Ice Sheet[J]. Journal of Glaciology, 1995, 41: 562-571.
|
33 |
Xin Huijuan, He Yuanqing, Niu Hewen, et al. Near-surface meteorological characteristics on the Baishui Glacier No.1, Mt. Yulong[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 676-684.
|
|
辛惠娟, 何元庆, 牛贺文, 等. 玉龙雪山白水1号冰川近地层气象要素变化特征[J]. 冰川冻土, 2018, 40(4): 676-684.
|
34 |
Cess R D, Zhang M H, Minnis P, et al. Absorption of solar radiation by clouds: observations versus models[J]. Science, 1995, 267(5197): 496-499.
|
35 |
Favier V, Wagnon P, Chazarin J P, et al. One year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes[J/OL]. Journal of Geophysical Research, 2004, 109(D18) [2019-04-30]. .
|
36 |
Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46.
|
|
孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46.
|
37 |
Braithwaite R J, Zhang Yu. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology, 2000, 46(152): 7-14.
|
38 |
Zhou Shuzhen, Zhang Ruyi, Zhang Chao. Meteorology and climatology[M]. Beijing: Higher Education Press, 1997: 84-86.
|
|
周淑贞, 张如一, 张超. 气象学与气候学[M]. 北京: 高等教育出版社, 1997: 84-86.
|
39 |
Zhang Guoshuai, Kang Shichang, Fujita K. Energy and mass balance of Zhadang Glacier surface, central Tibetan Plateau[J]. Journal of Glaciology, 2013, 59(213): 137-148.
|
40 |
Fang Xiaoyu, Li Zhongqin, Wuennemann B, et al. Physical energy-balance and statistical glacier melting models comparison and testing for Shiyi Glacier, Heihe River basin, Qilian Mountains, China[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 336-350.
|
|
方潇雨, 李忠勤, Wuennemann B, 等. 冰川物质平衡模式及其对比研究: 以祁连山黑河流域十一冰川研究为例[J]. 冰川冻土, 2015, 37(2): 336-350.
|
41 |
Kang Ersi. A parameterized energy balance model of glacier melting on the Tianshan Mountains[J]. Acta Geographica Sinica, 1994, 49(5): 467-476.
|
|
康尔泗. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5): 467-476.
|
42 |
Kang Ersi, Yang Daqing, Zhang Yinsheng. An experiment study of the water and heat balance in the source area of the Urumqi River in the Tian Shan Mountains[J]. Annals of Glaciology, 1992, 16: 55-66.
|
43 |
Li Jing, Liu Shiyin, Zhang Yong. Snow surface energy balance over the ablation period on the Keqicar Baxi Glacier in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 366-374.
|
|
李晶, 刘时银, 张勇. 天山南坡科契卡尔巴西冰川消融期雪面能量平衡研究[J]. 冰川冻土, 2007, 29(3): 366-374.
|
44 |
Han Haidong, Ding Yongjian, Liu Shiyin. Estimation and analysis of heat balance parameters in the ablation season of debris-covered Kerqikaer Glacier, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 88-94.
|
|
韩海东, 丁永建, 刘时银. 科奇喀尔冰川夏季表碛区热量平衡参数的估算分析[J]. 冰川冻土, 2005, 27(1): 88-94.
|
45 |
Sun Weijun, Qin Xiang, Ren Jiawen, et al. The surface energy budget in the accumulation zone of the Laohugou Glacier No.12 in the western Qilian Mountains, China, in summer 2009[J]. Arctic, Antarctic, and Alpine Research, 2012, 44(3): 296-305.
|
46 |
Sun Weijun, Qin Xiang, Wang Yetang, et al. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China[J]. Climate Dynamics, 2018, 50(9/10): 3557-3570.
|
47 |
Zhu Meilin, Yao Tandong, Yang Wei, et al. Energy- and mass-balance comparison between Zhadang and Parlung No.4 Glaciers on the Tibetan Plateau[J]. Journal of Glaciology, 2015, 61(227): 595-607.
|
48 |
Jiang Xi, Wang Ninglian, He Jianqiao, et al. A distributed surface energy and mass balance model and its application to a mountain glacier[J]. Chinese Science Bulletin, 2010, 55(20): 2079-2087.
|
|
蒋熹, 王宁练, 贺建桥, 等. 山地冰川表面分布式能量-物质平衡模型及其应用[J]. 科学通报, 2010, 55(18): 1757-1765.
|
49 |
Weidemann S S, Sauter T, Malz P, et al. Glacier mass changes of lake-terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield derived from geodetic observations and energy and mass balance modeling[J]. Frontiers of Earth Science, 2018, 6(81): 1-16.
|
50 |
Oerlemans J, Grisogono B. Glacier winds and parametrizations of the related surface heat fluxes[J]. Tellus, 2002, 54(5): 440-452.
|
51 |
Kang Shichang, Chen Feng, Gao Tanguang, et al. Early onset of rainy season suppresses glacier melt: a case study on Zhadang Glacier, Tibetan Plateau[J]. Journal of Glaciology, 2009, 55(192): 755-758.
|
52 |
Illangasekare T H, Rodney J W J, Meier M F, et al. Modeling of meltwater infiltration in subfreezing snow[J]. Water Resources Research, 1990, 26(5): 1001-1012.
|