X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2020, Vol. 42 ›› Issue (3): 878-888.doi: 10.7522/j.issn.1000-0240.2019.1107

• 寒区工程与灾害 • 上一篇    下一篇

深部膨胀性黏土层冻结温度场的分布与冻胀力形成规律

杨青1(), 荣传新2()   

  1. 1.滁州学院 土木与建筑工程学院,安徽 滁州 239000
    2.安徽理工大学 土木建筑学院,安徽 淮南 232001
  • 收稿日期:2019-05-15 修回日期:2019-09-15 出版日期:2020-10-31 发布日期:2020-12-08
  • 通讯作者: 荣传新 E-mail:1302511392@qq.com;chxrong@aust.edu.cn
  • 作者简介:杨青(1990 - ), 女, 安徽滁州人, 助教, 2015年在安徽理工大学获硕士学位, 从事土木工程结构研究. E-mail: 1302511392@qq.com
  • 基金资助:
    国家自然科学基金项目(51374010);安徽理工大学矿山地下工程教育部工程研究中心2020年度基金项目(JYBGCZX2020209)

Distribution of the freezing temperature field and formation law of the frost heaving force of a deep expansive clay layer

Qing YANG1(), Chuanxin RONG2()   

  1. 1.College of Civil and Architectural Engineering,Chuzhou University,Chuzhou 239000,Anhui,China
    2.School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,Anhui,China
  • Received:2019-05-15 Revised:2019-09-15 Online:2020-10-31 Published:2020-12-08
  • Contact: Chuanxin RONG E-mail:1302511392@qq.com;chxrong@aust.edu.cn

摘要:

防止冻结管断裂是深部膨胀性黏土层在冻结壁形成过程中的一项亟待解决的课题。针对淮南矿区某矿副井深部膨胀性黏土层, 通过热力耦合计算分析, 研究了其冻结温度场分布与冻胀力形成规律。结果表明: 冻结152天、 236天时, 黏土层冻结壁平均温度分别为-14.42 ℃、 -16.58 ℃, 细砂层冻结壁平均温度分别为-15.86 ℃、 -17.32 ℃, 黏土层冻结壁平均温度比同时期细砂层高1.44 ℃、 0.74 ℃。黏土层冻结壁平均厚度分别为8.92 m、 10.25 m, 细砂层冻结壁平均厚度分别为9.54 m、 10.77 m, 黏土层冻结壁平均厚度比同时期细砂层小0.62 m、 0.56 m。细砂较膨胀性黏土易于冻结。冻结90天时, 黏土层外、 中、 内圈三圈冻结管平均冻胀力约为同时期细砂层的1.1倍。冻结151天时, 黏土层三圈冻结管围成的冻结壁内平均冻胀力均达到初始地应力的81.1%, 是同时期细砂层的1.16倍。冻结236天时, 细砂层内圈管的冻胀力为3.91 MPa, 比中圈管3.72 MPa大了5.11%, 而黏土层内圈管的冻胀力为4.81 MPa, 比中圈管4.74 MPa大了1.48%。黏土层三圈冻结管围成的冻结壁内平均冻胀力均达到初始地应力的88.6%, 是同时期细砂层的1.28倍。深部膨胀性黏土层及与细砂层界面处冻胀力均存在显著的不均匀性, 最大冻胀力的主要位置与实际工程中掘进时的断管处基本对应, 不均匀冻胀力是造成冻结管断裂的重要原因。

关键词: 膨胀性黏土, 热力耦合, 温度场, 冻胀力

Abstract:

To prevent the fracture of freezing pipe is an urgent problem in the formation of frozen wall in deep expansive clay layer. According to the soil properties of the deep thick expansive clay layer of a mine auxiliary shaft in Huainan mining area, distribution of the freezing temperature field and formation law of the frost heaving force are studied through the thermo-mechanical coupling calculation. When frozen for 152 days and 236 days, the average temperature of clay layer is -14.42 ℃, -16.58 ℃ and fine sand layer is -15.86 ℃, -17.32 ℃ respectively. The average temperature of clay layer is 1.44 ℃ and 0.74 ℃ higher than that of fine sand layer in the same period. The average thickness of the frozen wall in clay layer is 8.92 m and 10.25 m respectively, and that in fine sand layer is 9.54 m and 10.77 m respectively. The average thickness of the frozen wall in clay layer is 0.62 m and 0.56 m smaller than that in fine sand layer in the same period. Sand is easier to freeze and faster than clay. When frozen for 90 days, the average frost heaving force of the outer, middle and inner circles of the deep clay layer is about 1.1 times of that of fine sand layer in the same period. When the clay layer was frozen for 151 days, the average frost heaving force in the frozen wall surrounded by three circles of freezing pipes reached 81.1% of the initial ground stress, which was 1.16 times of the fine sand layer in the same period. When frozen for 236 days, the frost heaving force of inner circle of fine sand layer is 3.91 MPa, which is about 5.11% bigger compared with that of middle circle of 3.72 MPa, while that of inner circle of clay layer is 4.81 MPa, which is about 1.48% bigger compared with that of middle circle of 4.74 MPa. The average frost heaving force in the frozen wall surrounded by three circles of freezing pipes in clay layer is 88.6% of the initial ground stress, which is 1.28 times of that of fine sand layer in the same period. There is a significant non-uniformity in the frost heaving force at the deep expansive clay layer and the interface with the fine sand layer. The main position of the maximum frost heaving force is basically corresponding to the pipe break in the actual project excavation. It highlights that the non-uniform frost heaving force is the important reason for fracture of freezing pipes, which provides a reference for the design of similar frozen projects in the future.

Key words: expansive clay, thermo-mechanical coupling, temperature field, frost heaving force

中图分类号: 

  • TU443