1 |
Gu Song, Tang Yanhong, Cui Xiaoyong, et al. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2005, 129(3/4): 175 - 185.
|
2 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527 - 2542.
|
3 |
Duan Anmin, Xiao Zhixiang. Does the climate warming hiatus exist over the Tibetan Plateau?[J/OL]. Scientific Reports, 2015, 5 [2019-11-29]. .
|
4 |
Wang Qingfeng, Zhang Tingjun, Jin Huijun, et al. Observational study on the active layer freeze-thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International, 2017, 440: 13 - 22.
|
5 |
Woo M K, Kane D L, Carey S K, et al. Progress in permafrost hydrology in the new millennium[J]. Permafrost and Periglacial Processes, 2008, 19(2): 237 - 254.
|
6 |
Zhang Mingli, Wen Zhi, Xue Ke. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe[J]. Journal of Arid Land Resources and Environment, 2015, 29(9): 176 - 181.
|
|
张明礼, 温智, 薛珂. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015, 29(9): 176 - 181.
|
7 |
Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250 - 255.
|
|
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250 - 255.
|
8 |
Li Xin, Jin Rui, Pan Xiaoduo, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 33 - 42.
|
9 |
Yu Lianyu, Zeng Yijian, Wen Jun, et al. Liquid-vapor-air flow in the frozen soil[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7393 - 7415.
|
10 |
Min Wenbin, Li Yueqing, Li Bin. Relation analysis of remotely sensed temperature, soil surface and air temperature over alpine meadow[J]. Science Technology and Engineering, 2013, 13(12): 3497 - 3504.
|
|
闵文彬, 李跃清, 李宾. 高山草甸遥感温度和地、 气温度的关系分析[J]. 科学技术与工程, 2013, 13(12): 3497 - 3504.
|
11 |
Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: visible-thermal infrared and radar sensor[J]. Advances in Earth Science, 2009, 24(9): 963 - 972.
|
|
张廷军, 晋锐, 高峰. 冻土遥感研究进展: 可见光、 红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963 - 972.
|
12 |
Fan Jihui, Lu Xuyang, Wang Xiaodan. The freezing-thawing processes and soil moisture-energy distribution in permafrost active layer, northern Tibet[J]. Mountain Research, 2014, 32(4): 385 - 392.
|
|
范继辉, 鲁旭阳, 王小丹. 藏北高寒草地土壤冻融循环过程及水热分布特征[J]. 山地学报, 2014, 32(4): 385 - 392.
|
13 |
Li Desheng, Wen Zhi, Zhang Mingli, et al. The quantitative analysis of the hydro-thermal dynamic of permafrost active layer effected by precipitation[J]. Journal of Arid Land Resources and Environment, 2017, 31(7): 108 - 113.
|
|
李德生, 温智, 张明礼, 等. 降水对多年冻土活动层水热影响定量分析[J]. 干旱区资源与环境, 2017, 31(7): 108 - 113.
|
14 |
Liu Guangsheng, Wang Genxu, Hu Hongchang, et al. Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 89 - 95.
|
|
刘光生, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J]. 冰川冻土, 2009, 31(1): 89 - 95.
|
15 |
Chang Juan, Wang Genxu, Gao Yongheng, et al. Impacts of snow cover change on soil water-heat processes of swamp and meadow in permafrost region, Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2012, 32(23): 7289 - 7301.
|
|
常娟, 王根绪, 高永恒, 等. 青藏高原多年冻土区积雪对沼泽、 草甸浅层土壤水热过程的影响[J]. 生态学报, 2012, 32(23): 7289 - 7301.
|
16 |
Zhang Siyi, Li Xiaoyan. Soil moisture and temperature dynamics in typical alpine ecosystems: a continuous multi-depth measurements-based analysis from the Qinghai-Tibet Plateau, China[J]. Hydrology Research, 2018, 49(1): 194 - 209.
|
17 |
Niu Fujun, Gao Zeyong, Lin Zhanju, et al. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China[J/OL]. Geoderma, 2019, 354 [2019-11-27]. .
|
18 |
Xu Changlin. Variations in vegetation composition and nutrient characteristics related to aspect in an alpine meadow in the northeast margin of the Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2016, 25(4): 26 - 35.
|
|
徐长林. 坡向对青藏高原东北缘高寒草甸植被构成和养分特征的影响[J]. 草业学报, 2016, 25(4): 26 - 35.
|
19 |
Zhang Yinsheng, Ma Yingzhao, Zhang Yanlin, et al. Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(7): 664 - 673.
|
|
张寅生, 马颖钊, 张艳林, 等. 青藏高原坡面尺度冻融循环与水热条件空间分布[J]. 科学通报, 2015, 60(7): 664 - 673.
|
20 |
Wang Genxu, Zhang Yinsheng. Ecohydrology in cold regions: theory and practice[M]. Beijing: Science Press, 2016.
|
|
王根绪, 张寅生. 寒区生态水文学理论与实践[M]. 北京: 科学出版社, 2016.
|
21 |
Liu Guangsheng, Wang Genxu, Sun Xiangyang, et al. The response of soil moisture in swamp meadow in the source regions of the Yangtze River to artificially warming[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 668 - 675.
|
|
刘光生, 王根绪, 孙向阳, 等. 长江源区沼泽草甸多年冻土活动层土壤水分对模拟增温的响应[J]. 冰川冻土, 2015, 37(3): 668 - 675.
|
22 |
Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau[J]. Journal of Mountain Research, 2002, 20(5): 553 - 558.
|
|
杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553 - 558.
|
23 |
Guo Weichao, Liu Hongyan, Anenkhonov O A, et al. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes[J]. Agricultural and Forest Meteorology, 2018, 252: 10 - 17.
|
24 |
Cao Wei, Sheng Yu, Wu Jichun, et al. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2017, 14(12): 2406 - 2419.
|
25 |
Dodson R, Marks D. Daily air temperature interpolated at high spatial resolution over a large mountainous region[J/OL]. Climate Research, 1997, 8(1) [2020-12-10]. .
|
26 |
Quan Chen, Zhou Bingrong, Zhu Shengcui, et al. Variation characteristics of soil temperature and moisture during the freezing and thawing periods in alpine wetland in Qinghai-Tibetan Plateau[J]. Journal of Arid Meteorology, 2018, 36(2): 219 - 225.
|
|
权晨, 周秉荣, 朱生翠, 等. 青藏高原高寒湿地冻融过程土壤温湿变化特征[J]. 干旱气象, 2018, 36(2): 219 - 225.
|
27 |
Yang Kun, Qin Jun, Zhao Long, et al. A multiscale soil moisture and freeze-thaw monitoring network on the third pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12): 1907 - 1916.
|
28 |
Perfect E, Williams P J. Thermally induced water migration in frozen soils[J]. Cold Regions Science and Technology, 1980, 3(2/3): 101 - 109.
|
29 |
Lu Jianguo, Zhang Mingyi, Zhang Xiyin, et al. Experimental study on the unfrozen water content and the freezing temperature during freezing and thawing processes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1803 - 1812.
|
|
路建国, 张明义, 张熙胤, 等. 冻融过程中未冻水含量及冻结温度的试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1803 - 1812.
|
30 |
Li Lin, Wang Zhenyu, Xu Weixin, et al. Response of growth of typical plateau meadow on Tibetan Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1006 - 1013.
|
|
李林, 王振宇, 徐维新, 等. 青藏高原典型高寒草甸植被生长发育对气候和冻土环境变化的响应[J]. 冰川冻土, 2011, 33(5): 1006 - 1013.
|
31 |
Lan Cuo, Zhang Yongxin, Bohn T J, et al. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(16): 8276 - 8298.
|
32 |
Liu Xin, Wang Yibo, Mingxia Lü, et al. Soil quality assessment of alpine grassland in permafrost region of Tibetan Plateau based on principal component analysis[J]. Journal of Glaciology and Geocryology, 2018, 40(3): 469 - 479.
|
|
刘鑫, 王一博, 吕明侠, 等. 基于主成分分析的青藏高原多年冻土区高寒草地土壤质量评价[J]. 冰川冻土, 2018, 40(3): 469 - 479.
|
33 |
Zhao Dongsheng, Wu Shaohong, Yin Yunhe, et al. Vegetation distribution on Tibetan Plateau under climate change scenario[J]. Regional Environmental Change, 2011, 11(4): 905 - 915.
|