冰川冻土 ›› 2020, Vol. 42 ›› Issue (1): 157-169.doi: 10.7522/j.issn.1000-0240.2020.0006
贾麟1(), 范成彦1, 母梅1, 陈旭1, 仲文1, 尚建国2, 张凤1, 李丽丽3, 彭小清1, 牟翠翠1,4,5(
), 张廷军1,5
收稿日期:
2019-10-21
修回日期:
2020-03-22
出版日期:
2020-06-30
发布日期:
2020-07-03
通讯作者:
牟翠翠
E-mail:jial14@lzu.edu.cn;mucc@lzu.edu.cn
作者简介:
贾麟(1995 - ), 男, 甘肃省兰州人, 2018年在兰州大学获得学士学位, 现为兰州大学在读硕士研究生, 从事多年冻土碳循环研究. E-mail: jial14@lzu.edu.cn
基金资助:
Lin JIA1(), Chengyan FAN1, Mei MU1, Xu CHEN1, Wen ZHONG1, Jianguo SHANG2, Feng ZHANG1, Lili LI3, Xiaoqing PENG1, Cuicui MU1,4,5(
), Tingjun ZHANG1,5
Received:
2019-10-21
Revised:
2020-03-22
Online:
2020-06-30
Published:
2020-07-03
Contact:
Cuicui MU
E-mail:jial14@lzu.edu.cn;mucc@lzu.edu.cn
摘要:
北半球多年冻土区储存着大量的土壤有机碳, 气候变暖加剧了多年冻土退化, 多年冻土退化最明显的特征是热喀斯特。热喀斯特会直接导致活动层及多年冻土层土壤有机质暴露, 并改变水文、 植被和土壤生物环境条件, 对生态系统碳循环具有重要影响。热喀斯特对碳循环的影响是评估多年冻土碳循环和气候变化关系不确定性的关键问题之一。然而, 在气候变暖背景下热喀斯特地貌的发育及其对碳循环影响有多大, 目前对这个问题仍然缺乏足够的认识。通过综合比较第三极和北极热喀斯特相关研究, 分析了第三极和北极地区热喀斯特地貌特征及其变化趋势, 阐述了热喀斯特对植被演替、 土壤碳损失和生态系统温室气体排放过程的影响, 并提出了未来热喀斯特研究可能遇到的挑战。认识热喀斯特碳循环过程, 是评估气候变化对多年冻土碳循环影响的关键环节, 有助于加强多年冻土区生态系统碳循环与气候变暖之间反馈关系的认知。
中图分类号:
贾麟, 范成彦, 母梅, 陈旭, 仲文, 尚建国, 张凤, 李丽丽, 彭小清, 牟翠翠, 张廷军. 从第三极到北极: 热喀斯特及其对碳循环影响研究进展[J]. 冰川冻土, 2020, 42(1): 157-169.
Lin JIA, Chengyan FAN, Mei MU, Xu CHEN, Wen ZHONG, Jianguo SHANG, Feng ZHANG, Lili LI, Xiaoqing PENG, Cuicui MU, Tingjun ZHANG. Studies of thermokarst and its effects on ecosystem carbon cycle in the Third Polar regions and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 157-169.
表1
常见的热喀斯特地貌分类及定义"
地貌类型 | 英文名称 | 定义 | 文献来源 |
---|---|---|---|
热融湖塘 | thermokarst lake/pond | 自然或人为因素引起的活动层增厚, 导致地下冰或富冰多年冻土层发生局部融化, 地表土层随之沉陷而形成热融洼地并积水形成的湖塘 | 《冰冻圈科学辞典》[ |
溯源热融滑塌 | retrogressive thaw slump | 该地貌常发育在水分条件较好的坡面或沟谷中, 成因是地下冰融化导致上覆土层失去支撑, 从而沿融化面发生失稳坍塌、 运移 | 《多年冻土调查手册》[ |
活动层边坡坍塌 | active-layer detachment slide | 由于冻土季节性融化, 覆盖在冰层之上的植被土壤块体整体顺坡滑下形成的一种地貌 | Leibman等[ |
热融沟 | thermo-erosion gully | 热融沟是由于冰楔融化以及地表径流冲刷形成逐渐连起来呈线性或者树枝状分布的一种地貌 | Kokelj等[ |
热融沉陷 | thermokarst settlement | 指由于多年冻土上限下移、 多年冻土表层地下冰融化而导致的地表向下的沉降过程 | 《冰冻圈科学词典》[ |
表2
青藏高原热融滑塌的类型之形态和动态变化[25,34,38]"
地点 | 类型 | 形态 | 坡度/(°) | 后缘陡坎高度/m | 发育时间 | 溯源坍塌速度/(m·a-1) | 发育阶段 |
---|---|---|---|---|---|---|---|
东大沟3号热融滑塌 | 坍塌沉陷式 | 圈椅形 | 3 ~ 5 | <1.2 | 1965—1985年 | 0.6 | 日趋稳定阶段 |
78道班1号热融滑塌 | 带形 | 5 ~ 8 | 3.0 ~ 3.5 | 1974—1979年 | 4.2 | 发展阶段 | |
1979—1985年 | 1.3 | ||||||
风火山观测站对面热融滑塌 | 牵引滑动式 | 多头舌形 | 7 ~ 10 | 1.5 ~ 2.5 | 1960—1976年 | 6.0 | 滑塌体北半部日趋稳定, 南半部处于发展阶段, 预计8 ~ 10年后可全部达到稳定 |
1976—1984年 | 3.4 | ||||||
1984—1985年 | 1.0 | ||||||
78道班1号热融滑塌 | 6 ~ 7 | 1.8 ~ 2.5 | 1984—1985年 | 3 ~ 4 | 初始阶段 | ||
东大沟1号热融滑塌 | 长条形 | 8 ~ 15 | 1.5 ~ 2.0 | 1976—1979年 | 4.6 | 日趋稳定阶段 | |
1979—1985年 | 0.5 | ||||||
风火山观测站北侧热融滑塌 | 8 | 1.3 ~ 1.5 | 1975—1985年 | 5 | 发展阶段 | ||
78道班热融滑塌 | 支岔形 | 12 ~ 15 | 2.0 ~ 2.5 | 1954—1961年 | 8.6 | 基本稳定 | |
1961—1965年 | 15.0 | ||||||
1965—1974年 | 4.0 | ||||||
1974—1979年 | 2.8 | ||||||
1979—1984年 | 0.2 | ||||||
1984—1985年 | 0 | ||||||
东大沟2号热融滑塌 | 9 ~ 13 | 1.5 ~ 2.5 | 1961—1976年 | 1.0 | 基本稳定 | ||
1976—1979年 | 0.6 | ||||||
1979—1985年 | 0 | ||||||
K3035 | 圈椅形 | 7 | 2.0 | 2002—2004年 | 5.0 | 发展阶段 | |
K3037 | 圈椅形 | 7 | 1.5 | 2002—2004年 | 5.0 | 发展阶段 | |
EBL-1 EBL-15 | 3 4 | 3.6 2.4 | 1997—2009年 2009—2015年 2015—2017年 1997—2009年 2009—2015年 2015—2017年 | 8.8 1.9 1.2 2.1 3.8 4.7 | 日趋稳定阶段 发展阶段 |
1 | Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132 - 154. |
2 | Zimov S A, Schuur E A G, Chapin III F S. Permafrost and the global carbon budget[J]. Science, 2006, 312(5780): 1612 - 1613. |
3 | Tarnocai C, Canadell J G, Schuur E A, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2): 1 - 11. |
4 | Mu C, Zhang T, Wu Q, et al. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J]. The Cryosphere, 2015, 9(2): 479 - 486. |
5 | Hugelius G, Strauss J, Zubrzycki S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences, 2014, 11(23): 6573 - 6593. |
6 | Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S03. |
7 | Wu Q, Zhang T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D09107. |
8 | Peng X, Zhang T, Frauenfeld O W, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251 - 266. |
9 | Jorgenson M T, Osterkamp T E. Response of boreal ecosystems to varying modes of permafrost degradation[J]. Canadian Journal of Forest Research, 2005, 35(9): 2100 - 2111. |
10 | Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171 - 179. |
11 | Mu C, Zhang T, Zhang X, et al. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(7): 1781 - 1791. |
12 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Glossary of cryospheric science[M]. Beijing: China Meteorological Press, 2014. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典 [M]. 北京: 气象出版社, 2014. | |
13 | Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature communications, 2016, 7(1): 1 - 11. |
14 | Jensen A E, Lohse K A, Crosby B T, et al. Variations in soil carbon dioxide efflux across a thaw slump chronosequence in northwestern Alaska[J]. Environmental Research Letters, 2014, 9(2): 025001. |
15 | Matheus Carnevali P B, Rohrssen M, Williams M R, et al. Methane sources in arctic thermokarst lake sediments on the north slope of Alaska[J]. Geobiology, 2015, 13(2): 181 - 197. |
16 | Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570 - 4587. |
17 | Hugelius G, Tarnocai C, Broll G, et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions [J]. Earth System Science Data, 2013, 5(1): 3 - 13. |
18 | Ping C L, Michaelson G J, Jorgenson M T, et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1(9): 615 - 619. |
19 | Van Huissteden J, Dolman A J. Soil carbon in the Arctic and the permafrost carbon feedback[J]. Current Opinion in Environmental Sustainability, 2012, 4(5): 545 - 551. |
20 | Vonk J E, Gustafsson Ö. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675 - 676. |
21 | Rudd J W M, Hamilton R D. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism 1[J]. Limnology and oceanography, 1978, 23(2): 337 - 348. |
22 | Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18: GB4009. |
23 | Whalen S C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere[J]. Environmental Engineering Science, 2005, 22(1): 73 - 94. |
24 | Turetsky M R, Abbott B W, Jones M C, et al. Permafrost collapse is accelerating carbon release[J]. Nature, 2019, 569(7754): 32 - 34. |
25 | Wang Shaoling. Thaw slumping in Fenghuo mountain area along Qinghai-Xizang Highway[J]. Journal of Glaciology and Geocryology, 1990, 12(1): 63 - 70. |
王绍令. 青藏公路风火山地区的热融滑塌 [J]. 冰川冻土, 1990, 12(1): 63 - 70. | |
26 | Wang Zhihua. Landslides along the Qinghai-Tibet Railway and Highway[J]. Geoscience, 2003, 17(4): 355 - 362. |
王治华. 青藏公路和铁路沿线的滑坡研究[J]. 现代地质, 2003, 17(4): 355 - 362. | |
27 | Zhao Lin, Sheng Yu, Zhuotong Nan, et al. Permafrost survey manual[M]. Beijing: Science Press, 2015. |
赵林, 盛煜, 南卓铜, 等. 多年冻土调查手册[M]. 北京: 科学出版社, 2015. | |
28 | Leibman M, Khomutov A, Kizyakov A. Cryogenic landslides in the Arctic plains of Russia: Classification, mechanisms, and landforms[M]//Landslide Science for a Safer Geoenvironment. Springer, Cham, 2014: 493 - 497. |
29 | Kokelj S V, Jorgenson M T. Advances in thermokarst research[J]. Permafrost and Periglacial Processes, 2013, 24(2): 108 - 119. |
30 | Anthony K M W, Zimov S A, Grosse G, et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch[J]. Nature, 2014, 511(7510): 452 - 456. |
31 | Luo Jing, Niu Fujun, Lin Zhanju, et al. Development of thawing hazards and thermal influence on permafrost along Qinghai-Tibet engineering corridor[J]. Journal of Engineering Geology, 2014, 22(2): 326 - 333. |
罗京, 牛富俊, 林战举, 等. 青藏工程走廊典型热融灾害现象及其热影响研究[J]. 工程地质学报, 2014, 22(2): 326 - 333. | |
32 | Luo J, Niu F, Lin Z, et al. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe region[J]. Geomorphology, 2019, 341: 79 - 85. |
33 | Zhong Wen. Investigation on deformation of thermokarst terrain in permafrost regions over Heihe River basin in Qilian Mountains[D]. Lanzhou: Lanzhou University, 2019. |
仲文. 祁连山黑河上游多年冻土区热融喀斯特地表变形监测研究[D]. 兰州: 兰州大学, 2019. | |
34 | Mu C, Shang J, Zhang T, et al. Acceleration of thaw slump during 1997—2017 in the Qilian Mountains of the northern Qinghai-Tibetan Plateau[J]. Landslides, 2020, 17: 1051 - 1062. |
35 | Liang Linlin, Jiang Liming, Zhou Zhiwei, et al. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land and Resources, 2019, 31(2): 180 - 186. |
梁林林, 江利明, 周志伟, 等. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180 - 186. | |
36 | Huang L, Liu L, Jiang L, et al. Automatic mapping of thermokarst landforms from remote sensing images using deep learning: A case study in the Northeastern Tibetan Plateau[J]. Remote Sensing, 2018, 10(12): 2067. |
37 | Huang L, Luo J, Lin Z, et al. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images[J]. Remote Sensing of Environment, 2020, 237: 111534. |
38 | Jin Dewu. A study on the stability of slopes in the permafrost regions of the Qinghai-Tibet Plateau[D]. Xi’an: Chang’an University, 2004. |
靳德武. 青藏高原多年冻土区斜坡稳定性研究[D]. 西安: 长安大学, 2004. | |
39 | Niu F, Lin Z, Liu H, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3/4): 222 - 233. |
40 | Luo J, Niu F, Lin Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556 - 564. |
41 | Liu J, Wang S, Yu S, et al. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67(3/4): 209 - 217. |
42 | Cui W, Wu Q B, Liu Y Z. The thermal effect of a thermokarst lake on permafrost[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 755 - 760. |
43 | Lin Z, Niu F, Xu Z, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(4): 315 - 324. |
44 | Wang Huini. Monitoring and trend study on space-time evolution of thermokarst lakes basedon remote sensing in the Qinghai-Tibet plateau[D]. Xi’an: Chang’an University, 2013. |
王慧妮. 基于遥感的青藏高原热融湖塘时空演化监测与趋势分析[D]. 西安: 长安大学, 2013. | |
45 | Mu C C, Abbott B W, Zhao Q, et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(17): 8945 - 8952. |
46 | Yang G, Peng Y, Olefeldt D, et al. Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau[J]. Environmental Science & Technology, 2018, 52(3): 1244 - 1252. |
47 | Mu C C, Abbott B W, Wu X D, et al. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(18): 9389 - 9399. |
48 | Wu Q, Zhang P, Jiang G, et al. Bubble emissions from thermokarst lakes in the Qinghai-Xizang Plateau[J]. Quaternary International, 2014, 321: 65 - 70. |
49 | Mu C, Zhang T, Wu Q, et al. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau[J]. Journal of Limnology, 2016, 75(2): 313 - 319. |
50 | Yan F, Sillanpää M, Kang S, et al. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(7): 2091 - 2103. |
51 | Lantz T C, Kokelj S V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada[J]. Geophysical Research Letters, 2008, 35: L06502. |
52 | Veremeeva A, Gubin S. Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene[J]. Permafrost and periglacial processes, 2009, 20(4): 399 - 406. |
53 | Jorgenson M T, Yoshikawa K, Kanevskiy M, et al. Permafrost characteristics of Alaska[C]//Proceedings of the Ninth International Conference on Permafrost. University of Alaska: Fairbanks, 2008, 3: 121 - 122. |
54 | Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment[J]. Nature Communications, 2019, 10(1): 1 - 11. |
55 | Séjourné A, Costard F, Fedorov A, et al. Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation[J]. Geomorphology, 2015, 241: 31 - 40. |
56 | Lantuit H, Pollard W H, Couture N, et al. Modern and late Holocene retrogressive thaw slump activity on the Yukon coastal plain and Herschel Island, Yukon Territory, Canada[J]. Permafrost and Periglacial Processes, 2012, 23(1): 39 - 51. |
57 | Jorgenson M T, Shur Y L, Pullman E R. Abrupt increase in permafrost degradation in Arctic Alaska[J]. Geophysical Research Letters, 2006, 33(2): 356 - 360. |
58 | Liljedahl A K, Boike J, Daanen R P, et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology[J]. Nature Geoscience, 2016, 9(4): 312 - 318. |
59 | Raynolds M K, Walker D A, Ambrosius K J, et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska[J]. Global Change Biology, 2014, 20(4): 1211 - 1224. |
60 | Morgenstern A, Ulrich M, Günther F, et al. Evolution of thermokarst in East Siberian ice-rich permafrost: a case study[J]. Geomorphology, 2013, 201: 363 - 379. |
61 | Carroll M L, Townshend J R G, DiMiceli C M, et al. Shrinking lakes of the Arctic: spatial relationships and trajectory of change[J]. Geophysical Research Letters, 2011, 38: L20406. |
62 | Bryksina N A, Kirpotin S N. Landscape-space analysis of change of thermokarst lakes areas and numbers in the permafrost zone of West Siberia[J]. Tomsk State University Journal of Biology, 2012, 4: 185 - 194. |
63 | Jones B M, Grosse G, Arp C D, et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116: G00M03. |
64 | Sannel A B K, Kuhry P. Warming-induced destabilization of peat plateau/thermokarst lake complexes[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116: G03035. |
65 | Iijima Y, Fedorov A N, Ohta T, et al. Recent Hydrological and Ecological Changes in Relation to Permafrost Degradation under Increased Precipitation in an Eastern Siberian Boreal Forest[C]//Tenth International Conference on Permafrost. Salekhard: The Northern Publisher, 2012, 1: 161 - 166. |
66 | Kravtsova V I, Tarasenko T V. The Dynamics of thermokarst lakes under climate change since 1950, Central Yakutia[J]. Kriosfera Zemli, 2011, 15: 31 - 42. |
67 | Chen M, Rowland J C, Wilson C J, et al. The importance of natural variability in lake areas on the detection of permafrost degradation: a case study in the Yukon Flats, Alaska[J]. Permafrost and Periglacial Processes, 2013, 24(3): 224 - 240. |
68 | Smith L C, Sheng Y, MacDonald G M, et al. Disappearing arctic lakes[J]. Science, 2005, 308(5727): 1429 - 1429. |
69 | Weintraub M N, Schimel J P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils[J]. Ecosystems, 2003, 6(2): 129 - 143. |
70 | Oberbauer S F, Tweedie C E, Welker J M, et al. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients[J]. Ecological Monographs, 2007, 77(2): 221 - 238. |
71 | Sommerkorn M. Micro-topographic patterns unravel controls of soil water and temperature on soil respiration in three Siberian tundra systems[J]. Soil Biology and Biochemistry, 2008, 40(7): 1792 - 1802. |
72 | Serikova S, Pokrovsky O S, Ala-Aho P, et al. High riverine CO2 emissions at the permafrost boundary of Western Siberia[J]. Nature Geoscience, 2018, 11(11): 825 - 829. |
73 | Vonk J E, Mann P J, Davydov S, et al. High biolability of ancient permafrost carbon upon thaw[J]. Geophysical Research Letters, 2013, 40(11): 2689 - 2693. |
74 | Schädel C, Bader M K F, Schuur E A G, et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils[J]. Nature Climate Change, 2016, 6(10): 950 - 953. |
75 | Krieger K E. The topographic form and evolution of thermal erosion features: a first analysis using airborne and ground-based LiDAR in Arctic Alaska[D]. USA: Idaho State University, 2012. |
76 | Beamish A, Neil A, Wagner I, et al. Short-term impacts of active layer detachments on carbon exchange in a High Arctic ecosystem, Cape Bounty, Nunavut, Canada[J]. Polar biology, 2014, 37(10): 1459 - 1468. |
77 | Cassidy A E, Christen A, Henry G H, et al. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem[J]. Biogeosciences, 2015, 13(8): 2291 - 2303. |
78 | Turetsky M R, Abbott B W, Jones M C, et al. Carbon release through abrupt permafrost thaw[J]. Nature Geoscience, 2020, 13(2): 138 - 143. |
79 | Abbott B W, Larouche J R, Jones J B, et al. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost[J]. Journal of Geophysical Research, 2014, 119(10): 2049 - 2063. |
80 | Abbott B W, Jones J B, Godsey S E, et al. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost[J]. Biogeosciences, 2015, 12(12): 3725 - 3740. |
81 | Littlefair C A, Tank S E, Kokelj S V. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada[J]. Biogeosciences, 2017, 14(23): 5487 - 5505. |
82 | Pizano C, Barón A F, Schuur E A G, et al. Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra[J]. Environmental Research Letters, 2014, 9(7): 075006. |
83 | Anthony K W, von Deimling T S, Nitze I, et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes[J]. Nature communications, 2018, 9(1): 1 - 11. |
84 | Anthony K W, Daanen R, Anthony P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience, 2016, 9(9): 679 - 682. |
85 | Repo E, Huttunen J T, Naumov A V, et al. Release of CO2 and CH4 from small wetland lakes in western Siberia[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(5): 788 - 796. |
86 | Sturtevant C S, Oechel W C. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle[J]. Global Change Biology, 2013, 19(9): 2853 - 2866. |
87 | Laurion I, Vincent W F, MacIntyre S, et al. Variability in greenhouse gas emissions from permafrost thaw ponds[J]. Limnology and Oceanography, 2010, 55(1): 115 - 133. |
88 | Desyatkin A R, Takakai F, Fedorov P P, et al. CH4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia[J]. Soil Science and Plant Nutrition, 2009, 55(4): 558 - 570. |
89 | Bartlett K B, Crill P M, Sass R L, et al. Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D15): 16645 - 16660. |
90 | Zimov S A, Voropaev Y V, Semiletov I P, et al. North Siberian lakes: a methane source fueled by Pleistocene carbon[J]. Science, 1997, 277(5327): 800 - 802. |
91 | Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming[J]. Nature, 2006, 443(7107): 71 - 75. |
92 | Matveev A, Laurion I, Deshpande B N, et al. High methane emissions from thermokarst lakes in subarctic peatlands[J]. Limnology and Oceanography, 2016, 61(S1): 150 - 164. |
93 | Elder C D, Xu X, Walker J, et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon[J]. Nature Climate Change, 2018, 8(2): 166 - 171. |
94 | Brosius L S, Anthony K M W, Grosse G, et al. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117: G01022. |
95 | Walter K M, Chanton J P, Chapin F S, et al. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113: G00A08. |
96 | Elder C D, Schweiger M, Lam B, et al. Seasonal sources of whole-lake CH4 and CO2 emissions from interior Alaskan thermokarst lakes[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(5): 1209 - 1229. |
[1] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[2] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[3] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[4] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[8] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[9] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[10] | 贺鹏真,谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353. |
[11] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[12] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[13] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[14] | 张明礼, 王斌, 王得楷, 叶伟林, 郭宗云, 高樯, 岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[15] | 宋正民, 穆彦虎, 马巍, 俞祁浩, 栗晓林. 高海拔冻土区通风管路基管内风速及影响因素研究[J]. 冰川冻土, 2021, 43(4): 1111-1120. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000