冰川冻土 ›› 2020, Vol. 42 ›› Issue (1): 140-156.doi: 10.7522/j.issn.1000-0240.2020.0007
刘一静1(), 孙燕华1, 钟歆玥2(
), 王树发1, 肖雄新3, 马丽娟4, 苏航5, 赵文宇1, 张廷军1,6(
)
收稿日期:
2019-10-21
修回日期:
2020-02-22
出版日期:
2020-06-30
发布日期:
2020-07-03
通讯作者:
钟歆玥,张廷军
E-mail:liuyj2017@lzu.edu.cn;xyzhong@lzb.ac.cn;tjzhang@lzu.edu.cn
作者简介:
刘一静(1994 - ), 女, 甘肃天水人, 2017年在华中农业大学获得学士学位, 现为兰州大学在读硕士研究生, 从事积雪变化研究. E-mail: liuyj2017@lzu.edu.cn
基金资助:
Yijing LIU1(), Yanhua SUN1, Xinyue ZHONG2(
), Shufa WANG1, Xiongxin XIAO3, Lijuan MA4, Hang SU5, Wenyu ZHAO1, Tingjun ZHANG1,6(
)
Received:
2019-10-21
Revised:
2020-02-22
Online:
2020-06-30
Published:
2020-07-03
Contact:
Xinyue ZHONG, Tingjun ZHANG
E-mail:liuyj2017@lzu.edu.cn;xyzhong@lzb.ac.cn;tjzhang@lzu.edu.cn
摘要:
在全球气候变化背景下, 第三极和北极地区积雪是地表最活跃的自然要素之一, 其动态变化对气候环境和人类生活产生重要影响。通过回顾第三极和北极积雪研究进展, 阐述了降雪、 积雪范围、 积雪日数、 积雪深度和雪水当量在第三极和北极地区的时空分布特征和变化趋势。结果表明: 近50年, 特别是进入21世纪以来, 第三极和北极地区降雪比率均呈下降趋势; 积雪范围、 积雪日数、 积雪深度、 雪水当量总体均呈减小趋势, 融雪首日有所提前。同时就积雪变化对生态系统与气候系统的影响进行了论述, 评估了积雪的反馈作用。通过总结第三极和北极积雪变化研究进展, 凝练研究中存在的不足和未来发展趋势, 为提升积雪对气候变化及经济社会发展影响的认识提供重要科学支撑。
中图分类号:
刘一静, 孙燕华, 钟歆玥, 王树发, 肖雄新, 马丽娟, 苏航, 赵文宇, 张廷军. 从第三极到北极: 积雪变化研究进展[J]. 冰川冻土, 2020, 42(1): 140-156.
Yijing LIU, Yanhua SUN, Xinyue ZHONG, Shufa WANG, Xiongxin XIAO, Lijuan MA, Hang SU, Wenyu ZHAO, Tingjun ZHANG. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 140-156.
1 | Armstrong R L, Brodzik M J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001, 28(19): 3673 - 3676. |
2 | Fichefet T, Maqueda M A M. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover[J]. Climate Dynamics, 1999, 15(4): 251 - 268. |
3 | Rupp D E, Mote P W, Bindoff N L, et al. Detection and attribution of observed changes in Northern Hemisphere spring snow cover[J]. Journal of Climate, 2013, 26(18): 6904 - 6914. |
4 | Souma K, Wang Y. Improved simulation of the East Asian summer monsoon rainfall with satellite-derived snow water equivalent data[J]. Monthly Weather Review, 2009, 137(6): 1790 - 1804. |
5 | Xiao L, Che T, Chen L, et al. Quantifying snow albedo radiative forcing and its feedback during 2003-2016[J]. Remote Sensing, 2017, 9(9): 883. |
6 | Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7066): 303 - 309. |
7 | Zheng Du, Yao Tandong. Progress in research on formation and evolution of Tibetan Plateau with its environment and resource effects[J]. China Basic Science, 2004, 6(2): 15 - 21. |
郑度, 姚檀栋. 青藏高原形成演化及其环境资源效应研究进展[J]. 中国基础科学, 2004, 6(2): 15 - 21. | |
8 | Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382 - 1385. |
9 | Wang Yetang, He Yong, Hou Shugui. Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 855 - 861. |
王叶堂, 何勇, 侯书贵. 2000—2005年青藏高原积雪时空变化分析[J]. 冰川冻土, 2007, 29(6): 855 - 861. | |
10 | Li Peiji. Response of Tibetan snow cover to global warming[J]. Acta Geographica Sinica, 1996, 63(3): 260 - 265. |
李培基. 青藏高原积雪对全球变暖的响应[J]. 地理学报, 1996, 63(3): 260 - 265. | |
11 | Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003-2010[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1337 - 1344. |
孙燕华, 黄晓东, 王玮, 等 2003—2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(6): 1337 - 1344. | |
12 | Wu T W, Qian Z A. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J]. Journal of Climate, 2003, 16(12): 2038 - 2051. |
13 | Duan Anmin, Xiao Zhixiang, Wu Guoxiong, et al. Study progress of the influence of the Tibetan Plateau winter and spring snow depth on Asian summer monsoon[J]. Meteorological and Environmental Sciences, 2014, 37(3): 94 - 101. |
段安民, 肖志祥, 吴国雄, 等. 青藏高原冬春积雪影响亚洲夏季风的研究进展[J]. 气象与环境科学, 2014, 37(3): 94 - 101. | |
14 | Snow Monitoring A., water, ice and permafrost in the Arctic (SWIPA) : climate change and the Cryosphere[M]. Arctic Monitoring and Assessment Programme (AMAP), 2017. |
15 | Doherty S J, Warren S G, Grenfell T C, et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11647 - 11680. |
16 | Callaghan T V, Bjorn L O, Chernov Y, et al. Climate change and UV-B impacts on Arctic tundra and polar desert ecosystems[J]. Ambio, 2004, 33(7): 94. |
17 | Yang Mengqian, Ge Shanshan, Zhang Ren. Climate change and Arctic response: opportunities, challenges and risks[J]. China Soft Science, 2016(6):17 - 25. |
杨孟倩, 葛珊珊, 张韧. 气候变化与北极响应——机遇、 挑战与风险[J]. 中国软科学, 2016(6):17 - 25. | |
18 | Zhang Renhe, Zhou Shunwu. The air temperature change over Tibetan Plateau during 1979-2002 and its possible linkage with ozone depletion[J]. Acta Meteorologica Sinica, 2008, 66(6): 916 - 925. |
张人禾, 周顺武. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J]. 气象学报, 2008, 66(6): 916 - 925. | |
19 | Brown R D, Mote P W. The response of Northern Hemisphere snow cover to a changing climate[J]. Journal of Climate, 2009, 22(8): 2124 - 2145. |
20 | Serreze M C, Barrett A P, Lo F. Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals[J]. Monthly Weather Review, 2005, 133(12): 3407 - 3430. |
21 | Wolff M A, Isaksen K, Petersen-Øverleir A, et al. Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study[J]. Hydrology and Earth System Sciences, 2015, 19(2): 951 - 967. |
22 | Yang D, Kane D, Zhang Z, et al. Bias corrections of long-term (1973-2004) daily precipitation data over the northern regions[J]. Geophysical Research Letters, 2005, 32(19): 312 - 321. |
23 | Surussavadee C, Staelin D H. Satellite retrievals of arctic and equatorial rain and snowfall rates using millimeter wavelengths[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(11): 3697 - 3707. |
24 | Jiang Wenxuan, Jia La, Xiao Tiangui, et al. Climate change and spatial distribution of winter snowfall over the Tibetan Plateau during 1971-2010[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1211 - 1218. |
蒋文轩, 假拉, 肖天贵, 等. 1971—2010年青藏高原冬季降雪气候变化及空间分布[J]. 冰川冻土, 2016, 38(5): 1211 - 1218. | |
25 | Wang J, Zhang M, Wang S, et al. Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013[J]. Journal of Geographical Sciences, 2016, 26(9): 1277 - 1288. |
26 | Deng H, Pepin N C, Chen Y. Changes of snowfall under warming in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(14): 7323 - 7341. |
27 | Hu Haoran, Liang Ling. Temporal and spatial variations of snowfall in the east of Qinghai-Tibet Plateau in the last 50 years[J]. Acta Geographica Sinica, 2014, 69(7): 1002 - 1012. |
胡豪然, 梁玲. 近50年青藏高原东部降雪的时空演变[J]. 地理学报, 2014, 69(7): 1002 - 1012. | |
28 | White D, Hinzman L, Alessa L, et al. The arctic freshwater system: Changes and impacts [J]. Journal of Geophysical Research Biogeosciences, 2015, 112(G4): 310 - 317. |
29 | Rawlins M A, Steele M, Holland M M, et al. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations[J]. Journal of Climate, 2010, 23(21): 5715 - 5737. |
30 | Snow Monitoring A., water, ice and permafrost in the Arctic (SWIPA) : climate change and the Cryosphere[M]. Arctic Monitoring and Assessment Programme (AMAP), 2011. |
31 | Bjorkman A D, Elmendorf S C, Beamish A L, et al. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades[J]. Global Change Biology, 2015, 21(12): 4651 - 4661. |
32 | Liu J, Curry J A, Wang H, et al. Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences, 2012, 109(11): 4074 - 4079. |
33 | Screen J A, Simmonds I. Declining summer snowfall in the Arctic: causes, impacts and feedbacks[J]. Climate Dynamics, 2012, 38(11/12): 2243 - 2256. |
34 | Chen X, Long D, Liang S, et al. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data[J]. Remote Sensing of Environment, 2018, 215: 284 - 299. |
35 | Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote sensing of Environment, 2002, 83(1/2): 181 - 194. |
36 | Hutchison K D, Iisager B D, Mahoney R L. Enhanced snow and ice identification with the VIIRS cloud mask algorithm[J]. Remote sensing letters, 2013, 4(9): 929 - 936. |
37 | Key J R, Mahoney R, Liu Y, et al. Snow and ice products from Suomi NPP VIIRS[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 12816 - 12830. |
38 | Xia Lang, Mao Kebiao, Sun Zhiwen, et al. Cloud detection application on NPP VIIRS[J]. China Environmental Science, 2014, 34(3): 574 - 580. |
夏浪, 毛克彪, 孙知文, 等. 针对NPP VIIRS数据的云检测方法研究[J]. 中国环境科学, 2014, 34(3): 574 - 580. | |
39 | Dahe Q, Shiyin L, Peiji L. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of Climate, 2006, 19(9): 1820 - 1833. |
40 | Shen S S P, Yao R, Ngo J, et al. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997—2011[J]. Theoretical and Applied Climatology, 2015, 120(3/4): 445 - 453. |
41 | Yang Zhigang, Wa Da, Chu Duo. Spatiotemporal variations of snow cover on the Tibetan Plateau over the last 15 years[J]. Remote Sensing Technology and Application, 2017, 32(1): 27 - 36. |
杨志刚, 达娃, 除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27 - 36. | |
42 | Qin Zhengjie, Hou Shugui, Wang Yetang, et al. Spatio-temporal variability of winter snow cover over the Tibetan Plateau and its relation to Arctic Oscillation[J]. Geographical Research, 2017, 36(4): 743 - 754. |
覃郑婕, 侯书贵, 王叶堂, 等. 青藏高原冬季积雪时空变化特征及其与北极涛动的关系 [J]. 地理研究, 2017, 36(4): 743 - 754. | |
43 | Pu Z, Xu L, Salomonson V V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J]. Geophysical Research Letters, 2007, 34(6): 137 - 161. |
44 | Huang X, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017, 190: 274 - 288. |
45 | Osborne E, Richter-Menge J, Jeffries M. Arctic Report Card 2018[J]. NOAA Arctic Program, 2018. |
46 | Shi X, Déry S J, Groisman P Y, et al. Relationships between recent pan-Arctic snow cover and hydroclimate trends[J]. Journal of Climate, 2013, 26(6): 2048 - 2064. |
47 | Brown R, Derksen C, Wang L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967-2008[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D16111. |
48 | Park H, Yabuki H, Ohata T. Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948-2006[J]. Polar Science, 2012, 6(1): 23 - 37. |
49 | Che Tao, Hao Xiaohua, Dai Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247 - 1253. |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247 - 1253. | |
50 | Chu Duo, Yang Yong, Jiancan Luobu, et al. The variations of snow cover days over the Tibetan Plateau during 1981-2010[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1461 - 1472. |
除多, 杨勇, 罗布坚参, 等. 1981—2010年青藏高原积雪日数时空变化特征分析[J]. 冰川冻土, 2015, 37(6): 1461 - 1472. | |
51 | Tang Zhiguang, Wang Jian, Wang Xin, et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data[J]. Mountain Research, 2017, 35(3): 412 - 419. |
唐志光, 王建, 王欣, 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J]. 山地学报, 2017, 35(3): 412 - 419. | |
52 | Wang W, Huang X, Deng J, et al. Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover product[J]. Remote Sensing, 2015, 7(1): 169 - 194. |
53 | Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016, 10(5): 2453 - 2463. |
54 | Xiong C, Shi J, Cui Y, et al. Snowmelt pattern over high-mountain asia detected from active and passive microwave remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1096 - 1100. |
55 | Kitaev L M, Radionov V F, Forland E, et al. Duration of northern Eurasia snow cover under present climate change conditions[J]. Russian Meteorology and Hydrology, 2004 (11): 46 - 51. |
56 | Bulygina O N, Razuvaev V N, Korshunova N N. Changes in snow cover over Northern Eurasia in the last few decades[J]. Environmental Research Letters, 2009, 4(4): 045026. |
57 | Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014[J]. Environmental Research Letters, 2015, 10(4): 044010. |
58 | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature climate change, 2015, 5(5): 424 - 430. |
59 | Wang L, Derksen C, Brown R, et al. Recent changes in pan‐Arctic melt onset from satellite passive microwave measurements[J]. Geophysical Research Letters, 2013, 40(3): 522 - 528. |
60 | Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research: Atmospheres, 2004, 109: D14203. |
61 | Mioduszewski J R, Rennermalm A K, Robinson D A, et al. Controls on spatial and temporal variability in Northern Hemisphere terrestrial snow melt timing, 1979-2012[J]. Journal of Climate, 2015, 28(6): 2136 - 2153. |
62 | Tian Liuxi, Li Weizhong, Zhang Yao, et al. The analysis of snow information from 1979 to 2007 in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(20): 5974 - 5983. |
田柳茜, 李卫忠, 张尧, 等. 青藏高原 1979—2007 年间的积雪变化[J]. 生态学报, 2014, 34(20): 5974 - 5983. | |
63 | Xu W, Ma L, Ma M, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521 - 1533. |
64 | Shen Liucheng, Wu Tao, You Qinglong, et al. Analysis of the characteristics of spatial and temporal variations of snow depth and their causes over the central and eastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1150 - 1161. |
沈鎏澄, 吴涛, 游庆龙, 等. 青藏高原中东部积雪深度时空变化特征及其成因分析 [J]. 冰川冻土, 2019, 41(5): 1150 - 1161. | |
65 | Bai Shuying, Shi Jianqiao, Shen Weishou, et al. Spatial and temporal variations of snow and influencing factors in Tibet Plateau based on remote sensing[J]. Remote Sensing Technology and Application, 2014, 29(6): 954 - 962. |
白淑英, 史建桥, 沈渭寿, 等. 卫星遥感西藏高原积雪时空变化及影响因子分析[J]. 遥感技术与应用, 2014, 29(6): 954 - 962. | |
66 | Bulygina O N, Groisman P Y, Razuvaev V N, et al. Changes in snow cover characteristics over Northern Eurasia since 1966[J]. Environmental Research Letters, 2011, 6(4): 045204. |
67 | Dyrrdal A V, Saloranta T, Skaugen T, et al. Changes in snow depth in Norway during the period 1961-2010[J]. Hydrology Research, 2013, 44(1): 169 - 179. |
68 | Osokin N I, Sosnovsky A V. Spatial and temporal variability of depth and density of the snow cover in Russia[J]. Lëd i Sneg, 2014: 72 - 80. |
69 | Ma Lijuan, Qin Dahe. Spatial-Temporal characteristics of observed key parameters for snow cover in China during 1957-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1 - 11. |
马丽娟, 秦大河. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1): 1 - 11. | |
70 | Che Tao, Li Xin, Gao Feng. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 363 - 368. |
车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3): 363 - 368. | |
71 | Chanjia Bin, Qiu Yubao, Shi Lijuan, et al. Comparative validation of snow depth algorithms using AMSR-E passive microwave data in China[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 801 - 813. |
宾婵佳, 邱玉宝, 石利娟, 等. 我国主要积雪区AMSR-E被动微波雪深算法对比验证研究[J]. 冰川冻土, 2013, 35(4): 801 - 813. | |
72 | Liston G E, Hiemstra C A. The changing cryosphere: pan-Arctic snow trends (1979-2009)[J]. Journal of Climate, 2011, 24(21): 5691 - 5712. |
73 | Takala M, Luojus K, Pulliainen J, et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements[J]. Remote Sensing of Environment, 2011, 115(12): 3517 - 3529. |
74 | Irannezhad M, Ronkanen A K, Kløve B. Wintertime climate factors controlling snow resource decline in Finland[J]. International Journal of Climatology, 2016, 36(1): 110 - 131. |
75 | Skaugen T, Stranden H B, Saloranta T. Trends in snow water equivalent in Norway (1931-2009)[J]. Hydrology Research, 2012, 43(4): 489 - 499. |
76 | Maksyutova E V, Kichigina N V, Voropai N N, et al. Tendencies of hydroclimatic changes on the baikal natural territory[J]. Geography and Natural Resources, 2012, 33(4): 304 - 311. |
77 | Zhang T, Zhong X, Wang K. Snow density climatology across the former USSR[J]. The Cryosphere, 2014, 8(2): 785 - 799. |
78 | Masson D, Knutti R. Climate model genealogy[J]. Geophysical Research Letters, 2011, 38(8): 167 - 177. |
79 | Roesch A. Evaluation of surface albedo and snow cover in AR4 coupled climate models[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D15111. |
80 | Ma Lijuan, Luo Yong, Qin Dahe. Snow water equivalent over Eurasia in the next 50 years projected by CMIP3 model[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 707 - 720. |
马丽娟, 罗勇, 秦大河. CMIP3模式对未来50年欧亚大陆雪水当量的预估[J]. 冰川冻土, 2011, 33(4): 707 - 720. | |
81 | Wang Fang, Ding Yihui. Trends of snow cover fraction in East Asia in 21th Century under different scenarios[J]. Plateau Meteorology, 2011, 30(4): 869 - 877. |
汪方, 丁一汇. 不同排放情景下模拟的21世纪东亚积雪面积变化趋势[J]. 高原气象, 2011, 30(4): 869 - 877. | |
82 | Shi H X, Wang C H. Projected 21st Century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble[J]. The Cryosphere, 2015, 9(5): 1943 - 1953. |
83 | Xia Kun, Wang Bin. Evaluation and projection of snow cover fraction over Eurasia[J]. Climatic and Environmental Research, 2015, 20(1): 41 - 52. |
夏坤, 王斌. 欧亚大陆积雪覆盖率的模拟评估及未来情景预估[J]. 气候与环境研究, 2015, 20(1): 41 - 52. | |
84 | Derksen C, Brown R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections[J]. Geophysical Research Letters, 2012, 39(19): 19504. |
85 | Qu X, Hall A. On the persistent spread in snow-albedo feedback[J]. Climate dynamics, 2014, 42(1/2): 69 - 81. |
86 | Ji Z, Kang S. Projection of snow cover changes over China under RCP scenarios[J]. Climate dynamics, 2013, 41(3/4): 589 - 600. |
87 | Hezel P J, Zhang X, Bitz C M, et al. Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century[J]. Geophysical Research Letters, 2012, 39(17): 247 - 257. |
88 | Steiner N, Azetsu-Scott K, Hamilton J, et al. Observed trends and climate projections affecting marine ecosystems in the Canadian Arctic[J]. Environmental Reviews, 2015, 23(2): 191 - 239. |
89 | Lowry C S, Deems J S, Loheide II S P, et al. Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California[J]. Hydrological Processes, 2010, 24(20): 2821 - 2833. |
90 | Lyon S W, Laudon H, Seibert J, et al. Controls on snowmelt water mean transit times in northern boreal catchments[J]. Hydrological Processes, 2010, 24(12): 1672 - 1684. |
91 | Stewart I T, Cayan D R, Dettinger M D. Changes in snowmelt runoff timing in western North America under abusiness as usual’ climate change scenario[J]. Climatic Change, 2004, 62(1/2/3): 217 - 232. |
92 | Wang Shunjiu. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5): 1153 - 1164. |
王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 2017, 36(5): 1153 - 1164. | |
93 | Wu X, Che T, Li X, et al. Slower snowmelt in spring along with climate warming across the Northern Hemisphere[J]. Geophysical Research Letters, 2018, 45(22): 12331 - 12339. |
94 | Liu Junfeng, Yang Jianping, Chen Rensheng, et al. The simulation of snowmelt runoff model in the Dongkelamadi River Basin, headwater of the Yangze River[J]. Acta Geographica Sinica, 2006, 61(11): 1149 - 1159. |
刘俊峰, 杨建平, 陈仁升, 等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006, 61(11): 1149 - 1159. | |
95 | Fang Y H, Zhang X, Niu G Y, et al. Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the upper Changjiang River basin[J]. Water, 2017, 9(3): 165. |
96 | Shi X, Marsh P, Yang D. Warming spring air temperatures, but delayed spring streamflow in an Arctic headwater basin[J]. Environmental Research Letters, 2015, 10(6): 064003. |
97 | Yang D, Zhao Y, Armstrong R, et al. Yukon River streamflow response to seasonal snow cover changes[J]. Hydrological Processes: An International Journal, 2009, 23(1): 109 - 121. |
98 | Burn D H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin[J]. Journal of Hydrology, 2008, 352(1/2): 225 - 238. |
99 | Tan A, Adam J C, Lettenmaier D P. Change in spring snowmelt timing in Eurasian Arctic rivers[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D03101. |
100 | Pedersen S H, Liston G E, Tamstorf M P, et al. Quantifying episodic snowmelt events in Arctic ecosystems[J]. Ecosystems, 2015, 18(5): 839 - 856. |
101 | Kudo G, Ito K. Plant distribution in relation to the length of the growing season in a snow-bed in the Taisetsu Mountains, northern Japan[J]. Vegetatio, 1992, 98(2): 165 - 174. |
102 | Galen C, Stanton M L. Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae)[J]. American Journal of Botany, 1991, 78(7): 978 - 988. |
103 | Inouye D W, McGuire A D. Effects of snowpack on timing and abundance of flowering in Delphinium nelsonii (Ranunculaceae): implications for climate change[J]. American Journal of Botany, 1991, 78(7): 997 - 1001. |
104 | Kudo G. Effects of snow-free period on the phenology of alpine plants inhabiting snow patches[J]. Arctic and Alpine Research, 1991, 23(4): 436 - 443. |
105 | Liu Lin, Wu Yan, Sun Geng, et al. Effects of seasonal snow cover on carbon, nitrogen accumulation and distribution of two dominant plants in the alpine meadow in eastern Tibetan Plateau[J]. Bulletin of Botanical Research, 2011, 31(4): 451 - 460. |
刘琳, 吴彦, 孙庚, 等. 季节性雪被对青藏高原东缘高寒草甸2种优势植物碳、 氮积累和分配的影响[J]. 植物研究, 2011, 31(4): 451 - 460.] | |
106 | Sandvik S M, Odland A. Changes in alpine snowbed-wetland vegetation over three decades in northern Norway[J]. Nordic Journal of Botany, 2014, 32(3): 377 - 384. |
107 | Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables[M]. Springer Science & Business Media, 2003. |
108 | Uhlmann B, Goyette S, Beniston M. Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature, precipitation and humidity under conditions of climate change[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2009, 29(8): 1048 - 1055. |
109 | Wheeler J A, Cortés A J, Sedlacek J, et al. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea[J]. Journal of Ecology, 2016, 104(4): 1041 - 1050. |
110 | Domine F, Barrere M, Sarrazin D, et al. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra[J]. The Cryosphere, 2015, 9(3): 1633 - 1665. |
111 | Marsh P, Bartlett P, MacKay M, et al. Snowmelt energetics at a shrub tundra site in the western Canadian Arctic[J]. Hydrological Processes, 2010, 24(25): 3603 - 3620. |
112 | Taylor R V, Seastedt T R. Short-and long-term patterns of soil moisture in alpine tundra[J]. Arctic and Alpine Research, 1994, 26(1): 14 - 20. |
113 | Rixen C, Haeberli W, Stoeckli V. Ground temperatures under ski pistes with artificial and natural snow[J]. Arctic, Antarctic, and Alpine Research, 2004, 36(4): 419 - 427. |
114 | Brooks P D, Williams M W, Schmidt S K. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado[J]. Biogeochemistry, 1996, 32(2): 93 - 113. |
115 | Amoroso A, Domine F, Esposito G, et al. Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere[J]. Environmental Science & Technology, 2010, 44(2): 714 - 719. |
116 | Groffman P M, Hardy J P, Fashu-Kanu S, et al. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape[J]. Biogeochemistry, 2011, 102(1/2/3): 223 - 238. |
117 | Liu Lin, Yang Chunhua, Li Xin. Effects of seasonal snow cover on the dynamics of soil microbial biomass carbon and nitrogen in an alpine meadow[J]. Journal of Anhui Agricultural Sciences, 2011, 39(21): 12884 - 12888. |
刘琳, 杨春华, 李昕. 季节性雪被对高寒草甸土壤微生物量碳、 氮动态的影响[J]. 安徽农业科学, 2011, 39(21): 12884 - 12888. | |
118 | Liu Lin, Sun Geng, Wu Yan, et al. Effect of Seasonal Snow cover on soil nitrogen mineralization in an alpine meadow on the eastern Tibetan Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(4): 453 - 460. |
刘琳, 孙庚, 吴彦, 等. 季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响[J]. 应用与环境生物学报, 2011, 17(4): 453 - 460. | |
119 | Jin Huijun, Sun Liping, Wang Shaoling, et al. Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (I): vegetation and snow cover[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 535 - 545. |
金会军, 孙立平, 王绍令, 等. 青藏高原中、 东部局地因素对地温的双重影响(Ⅰ): 植被和雪盖[J]. 冰川冻土, 2008, 30(4): 535 - 545. | |
120 | Gouttevin I, Menegoz M, Dominé F, et al. How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117: G22020. |
121 | Yi Y, Kimball J S, Rawlins M A, et al. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics[J]. Biogeosciences Discussions, 2015, 12(14): 11113 - 11157. |
122 | Leffler A J, Klein E S, Oberbauer S F, et al. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra[J]. Oecologia, 2016, 181(1): 287 - 297. |
123 | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: an overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002. |
124 | Ling F, Zhang T. Modeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost Alaska[J]. Global and Planetary Change, 2007, 57(3/4): 235 - 246. |
125 | Wei Zhigang, Shihua Lü. Distribution of snow cover on the Qinghai-Xizang Plateau and its influence on surface albedo[J]. Plateau Meteorology, 1995, 14(1): 67 - 73. |
韦志刚, 吕世华. 青藏高原积雪的分布特征及其对地面反照率的影响[J]. 高原气象, 1995, 14(1): 67 - 73. | |
126 | Zhu Yuxiang, Ding Yihui. Influences of snow cover over Tibetan Plateau on weather and climate: advances and problems[J]. Meteorological Science and Technology, 2007, 35(1): 1 - 8. |
朱玉祥, 丁一汇. 青藏高原积雪对气候影响的研究进展和问题[J]. 气象科技, 2007, 35(1): 1 - 8. | |
127 | Chen Zhiheng, Zhang Jie, Xu Weiping. Relationship between multi-scale variations of snow cover on the Tibetan Plateau in early-spring and the North Atlantic sea surface temperature [J]. Journal of Glaciology and Geocryology, 2018, 40(4): 655 - 665. |
陈志恒, 张杰, 徐玮平. 青藏高原初春积雪的多尺度变化与北大西洋海温的关系[J]. 冰川冻土, 2018, 40(4): 655 - 665. | |
128 | Li Xiaolan, Zhang Feimin, Wang Chenghai. Comparison and analysis of snow depth over China, observed and derived from remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 755 - 764. |
李小兰, 张飞民, 王澄海. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 2012, 34(4): 755 - 764. | |
129 | Wu T W, Qian Z A. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J]. Journal of Climate, 2003, 16(12): 2038 - 2051. |
130 | Zhao P, Zhou Z, Liu J. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation[J]. Journal of Climate, 2007, 20(15): 3942 - 3955. |
131 | Qian Y F, Zheng Y Q, Zhang Y, et al. Responses of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2003, 23(6): 593 - 613. |
132 | Chen Xingfang, Song Wenling. Analysis of relationship between snow cover on Eurasia and Qinghai-Xizang Plateau in winter and summer rainfall in China and application to prediction[J]. Plateau Meteorology, 2000, 19(2): 214 - 223. |
陈兴芳, 宋文玲. 欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J]. 高原气象, 2000, 19(2): 214 - 223. | |
133 | Luo Wenfang. Analyses of relationship between anomalous snow cover over Qinghai-Xizang Plateau and drought and low temperature damage in various areas in Guizhou[J]. Plateau Meteorology, 2001, 20(3): 340 - 344. |
罗文芳. 青藏高原积雪异常与贵州东、 西部旱、 寒灾害关系的初步分析[J]. 高原气象, 2001, 20(3): 340 - 344. | |
134 | Hu Haoran, Wu Qing. Interdecadal variations of snow cover and their relations with snowfall and air temperature over east of Qinghai-Tibetan Plateau in last 44 years[J]. Plateau and Mountain Meteorology Research, 2016, 36(1): 38 - 43. |
胡豪然, 伍清. 近44年青藏高原东部积雪的年代际变化特征及其与降雪和气温的关系[J]. 高原山地气象研究, 2016, 36(1): 38 - 43. | |
135 | Cohen J L, Furtado J C, Barlow M A, et al. Arctic warming, increasing snow cover and widespread boreal winter cooling[J]. Environmental Research Letters, 2012, 7(1): 014007. |
136 | Furtado J C, Cohen J L, Butler A H, et al. Eurasian snow cover variability and links to winter climate in the CMIP5 models[J]. Climate Dynamics, 2015, 45(9/10): 2591 - 2605. |
137 | Orsolini Y J, Senan R, Vitart F, et al. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010[J]. Climate Dynamics, 2016, 47(3/4): 1325 - 1334. |
138 | Brown R D, Derksen C. Is Eurasian October snow cover extent increasing?[J]. Environmental Research Letters, 2013, 8(2): 024006. |
139 | Peings Y, Brun E, Mauvais V, et al. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th Century?[J]. Geophysical Research Letters, 2013, 40(1): 183 - 188. |
140 | Walsh J E. Intensified warming of the Arctic: causes and impacts on middle latitudes[J]. Global and Planetary Change, 2014, 117: 52 - 63. |
141 | Smith K L, Kushner P J, Cohen J. The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent[J]. Journal of climate, 2011, 24(23): 6185 - 6202. |
142 | Handorf D, Jaiser R, Dethloff K, et al. Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections[J]. Geophysical Research Letters, 2015, 42(7): 2367 - 2377. |
143 | Shi Xinghe, Li Shengchen, Li Dongliang, et al. Change in snow covers and snow disasters in winter in the south of Qinghai Province[J]. Advance Climate Change Research, 2007, 3(1): 36 - 40. |
时兴合, 李生辰, 李栋梁, 等. 青海南部冬季积雪和雪灾变化的特征[J]. 气候变化研究进展, 2007, 3(1): 36 - 40. | |
144 | Wang W, Liang T, Huang X, et al. Early warning of snow-caused disasters in pastoral areas on the Tibetan Plateau[J]. Natural Hazards and Earth System Sciences, 2013, 13(6): 1411 - 1425. |
145 | Cuerrier A, Brunet N D, Gérin-Lajoie J, et al. The study of Inuit knowledge of climate change in Nunavik, Quebec: a mixed methods approach[J]. Human Ecology, 2015, 43(3): 379 - 394. |
146 | Eckerstorfer M, Christiansen H H. Meteorology, topography and snowpack conditions causing two extreme mid-winter slush and wet slab avalanche periods in High Arctic Maritime Svalbard[J]. Permafrost and Periglacial Processes, 2012, 23(1): 15 - 25. |
[1] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[2] | 陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146. |
[3] | 孙兴亮, 郝晓华, 王建, 赵宏宇, 纪文政. 基于光谱-环境随机森林回归模型的MODIS积雪面积比例反演研究[J]. 冰川冻土, 2022, 44(1): 147-158. |
[4] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[5] | 刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287. |
[6] | 王京达, 郝晓华, 和栋材, 王建, 李弘毅, 赵琴. 基于AVHRR影像的北半球积雪识别算法[J]. 冰川冻土, 2022, 44(1): 316-326. |
[7] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[8] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[9] | 邹逸凡,孙鹏,张强,马梓策,吕胤锋,卞耀劲,刘瑞琳. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6): 1641-1658. |
[10] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[11] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[12] | 张鹏,孙鸿儒,贾丙瑞. 积雪变化对中国森林凋落物分解影响研究进展[J]. 冰川冻土, 2021, 43(6): 1840-1847. |
[13] | 贺鹏真,谢周清. 氧同位素示踪夏季北冰洋(62.3°~74.7° N)大气硝酸盐形成途径的研究[J]. 冰川冻土, 2021, 43(5): 1344-1353. |
[14] | 王鑫,王宁练,王俊杰,申保收. 我国新疆北部积雪中痕量元素的时空分布及污染评估[J]. 冰川冻土, 2021, 43(5): 1354-1364. |
[15] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000