冰川冻土 ›› 2021, Vol. 43 ›› Issue (6): 1704-1717.doi: 10.7522/j.issn.1000-0240.2020.0037
收稿日期:
2019-12-04
修回日期:
2020-06-23
出版日期:
2021-12-31
发布日期:
2022-01-28
作者简介:
卓嘎,正高级工程师,主要从事青藏高原气候变化及其影响研究. E-mail: 基金资助:
Zhuoga1,2,3(), Luobu4,Quzhen Basang5
Received:
2019-12-04
Revised:
2020-06-23
Online:
2021-12-31
Published:
2022-01-28
摘要:
青藏高原土壤水热状况对气候变化和植被退化方面的研究具有重要意义,土壤湿度的准确刻画还会影响到数值预报模式对当地及其下游地区降水的模拟能力。为此,采用中国科学院那曲高寒气候环境观测研究站安多观测点2014年1—12月的土壤温度、土壤湿度观测资料以及同期安多气象站观测数据,分析了青藏高原那曲中部不同深度土壤温湿度的分布特征及其与气温、降水量等气象要素的关系。结果表明:土壤温度在浅层为正弦曲线,随着土壤深度的增加,曲线逐渐接近直线。土壤升温迅速而降温过程缓慢。封冻和解冻日期随土壤深度的增加而推迟,封冻期逐渐缩短。不同层次土壤湿度日内变化较小。月变化呈单峰型结构,峰值和谷值基本出现在8月和12月。土壤湿度上升速率较下降速率缓慢。区域尺度上GLDAS-NOAH资料显示出类似的变化特征。土壤温湿度在一年中的变化不一致,但土壤温湿度呈显著正相关。浅层土壤的温度梯度明显大于深层;浅层土壤湿度最大,中间层较大,深层土壤湿度最小。随着干季向湿季的转换,由于太阳辐射的增加,非绝热加热呈增加的趋势。土壤湿度与气象要素在不同时段的相关性存在一些差异,但总体上土壤湿度与气温、降水量和相对湿度呈正相关,与风速、日照时数相关性不显著。
中图分类号:
卓嘎,罗布,巴桑曲珍. 青藏高原那曲中部土壤温湿分布特征[J]. 冰川冻土, 2021, 43(6): 1704-1717.
Zhuoga, Luobu,Quzhen Basang. Distribution characteristics of soil temperature and moisture in the middle region of Nagqu over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1704-1717.
1 | Zhang Wengang, Li Shuxun, Pang Qiangqiang, et al. Variation characteristics of soil temperature over Qinghai-Xizang Plateau in the past 45 years[J]. Acta Geographica Sinica, 2008, 63(11): 1151-1159. |
张文纲, 李述训, 庞强强, 等. 近45年青藏高原土壤温度的变化特征分析[J]. 地理学报, 2008, 63(11): 1151-1159. | |
2 | Shukla J, Mintz Y. The influence of land-surface evapotranspiration on Earth’s climate[J]. Science, 1982, 215: 1498-1501. |
3 | Yang Meixue, Yao Tandong, Nozomu H, et al. Daily freeze-thaw cycle of topsoil in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2006, 51(16): 1974-1976. |
杨梅学, 姚檀栋, Nozomu H, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976. | |
4 | Yang Nan, Fan Guangzhou. Analysis of soil temperature variation over the Qinghai-Xizang Plateau from 2000 to 2016[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(9): 40-51. |
杨楠, 范广洲. 2000-2016年青藏高原土壤温度变化特征分析[J]. 西南大学学报(自然科学版), 2019, 41(9): 40-51. | |
5 | Yang Meixue, Yao Tandong, Ding Yongjian, et al. The diurnal variation of the soil temperature in the northern part of Tibetan Plateau[J]. Environmental Science, 1999, 20(3): 5-8. |
杨梅学, 姚檀栋, 丁永建, 等. 藏北高原土壤温度的日变化[J]. 环境科学, 1999, 20(3): 5-8. | |
6 | Yang Meixue, Yao Tandong, Koike T. The latitude and elevation effects of the ground temperature distribution in northern Tibet Plateau[J]. Journal of Mountain Science, 1999, 17(4): 329-332. |
杨梅学, 姚檀栋, 小池俊雄. 藏北高原土壤温度分布的纬向效应和高度效应[J]. 山地学报, 1999, 17(4): 329-332. | |
7 | Yang Meixue, Yao Tandong, Wang Shaoling, et al. The features of soil temperature and moisture on northern Tibetan Plateau[J]. Geographical Research, 1999, 18(3): 312-317. |
杨梅学, 姚檀栋, 王绍令, 等. 藏北高原土壤温湿特征[J]. 地理研究, 1999, 18(3): 312-317. | |
8 | Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau[J]. Journal of Mountain Science, 2002, 20(5): 553-558. |
杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558. | |
9 | Han Binghong, Zhou Bingrong, Sun Ying, et al. The characteristics of soil temperature variations and heat exchange in freeze-thaw period over southern alpine grasslands in Qinghai Province[J]. Climate Change Research, 2018, 14(5): 456-464. |
韩炳宏, 周秉荣, 孙瑛, 等. 青海南部冻融区高寒草地土壤温度变化及热量传输特征[J]. 气候变化研究进展, 2018, 14(5): 456-464. | |
10 | Li Weipeng, Fan Jihui, Sha Yukun, et al. Soil temperature variation and thaw-freezing cycle in the alpine cold steppe, northern Tibetan Plateau[J]. Journal of Mountain Science, 2014, 32(4): 407-416. |
李卫朋, 范继辉, 沙玉坤, 等. 藏北高寒草原土壤温度变化与冻融特征[J]. 山地学报, 2014, 32(4): 407-416. | |
11 | Shi Lei, Du Jun, Zhou Kanshe, et al. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1241-1248. |
石磊, 杜军, 周刊社, 等. 1980-2012年青藏高原土壤湿度时空演变特征[J]. 冰川冻土, 2016, 38(5): 1241-1248. | |
12 | Zhuoga, Zhuoma Deji, Nima Ji. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River basin[J]. Plateau Meteorology, 2017, 36(3): 657-666. |
卓嘎, 德吉卓玛, 尼玛吉. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 2017, 36(3): 657-666. | |
13 | Zhuoga, Chen Tao, Gesang. Distribution and variation of soil moisture over the Tibetan Plateau and its typical areas[J]. Journal of Nanjing University of Information Science and Technology, 2017, 9(4): 445-454. |
卓嘎, 陈涛, 格桑. 青藏高原及其典型区域土壤湿度的分布和变化特征[J]. 南京信息工程大学学报, 2017, 9(4): 445-454. | |
14 | Wang Jing, Qi Li, Wu Zhiwei, et al. Applicability analysis of soil moisture from multiple substitute data in the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(2): 371-381. |
王静, 祁莉, 吴志伟, 等. 多套土壤湿度替代资料在青藏高原的适用性分析[J]. 高原气象, 2018, 37(2): 371-381. | |
15 | Cui Yuanyuan, Qin Jun, Jing Wenqi, et al. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 123-136. |
崔园园, 覃军, 敬文琪, 等. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136. | |
16 | Fan Keke, Zhang Qiang, Shi Peijun, et al. Evaluation of remote sensing and reanalysis soil moisture products on the Tibetan Plateau[J]. Acta Geographica Sinica, 2018, 73(9): 1778-1791. |
范科科, 张强, 史培军, 等. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018, 73(9): 1778-1791. | |
17 | Zhao Yizhou, Ma Yaoming, Ma Weiqiang, et al. Variations of soil temperature and soil moisture in northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 578-583. |
赵逸舟, 马耀明, 马伟强, 等. 藏北高原土壤温湿变化特征分析[J]. 冰川冻土, 2007, 29(4): 578-583. | |
18 | Yang Jian, Ma Yaoming. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 813-820. |
杨健, 马耀明. 青藏高原典型下垫面的土壤温湿特征[J]. 冰川冻土, 2012, 34(4): 813-820. | |
19 | Wan Guoning, Yang Meixue, Wang Xuejia, et al. Variations in soil moisture at different time scales of BJ site on the central Tibetan Plateau[J]. Chinese Journal of Soil Science, 2012, 43(2): 286-293. |
万国宁, 杨梅学, 王学佳, 等. 青藏高原中部BJ站土壤湿度不同时间尺度的变化[J]. 土壤通报, 2012, 43(2): 286-293. | |
20 | Wang Chenghai, Shang Dacheng. Effect of the variation of the soil temperature and moisture in the transition from dry-season to wet-season over northern Tibet Plateau[J]. Plateau Meteorology, 2007, 26(4): 677-685. |
王澄海, 尚大成. 藏北高原土壤温湿变化在高原干湿季转换中的作用[J]. 高原气象, 2007, 26(4): 677-685. | |
21 | Zhang Juan, Sha Zhanjiang, Xu Weixin. Variations of alpine meadow soil temperature and moisture in Batang, Yushu region of the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 635-642. |
张娟, 沙占江, 徐维新. 青藏高原玉树地区巴塘高寒草甸土壤温湿特征分析[J]. 冰川冻土, 2015, 37(3): 635-642. | |
22 | Yang Kun, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. Journal of the Meteorological Society of Japan, 2007, 85A: 229-242. |
23 | Lu Hui, Koike T, Yang Kun, et al. Improving land surface soil moisture and energy flux simulations over the Tibetan Plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 43-54. |
24 | Qin Jun, Zhao Long, Chen Yingying, et al. Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture[J]. Journal of Hydrology, 2015, 523(1): 170-178. |
25 | Su Zhongbo, Wen Jun, Dente L, et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences, 2011, 15(7): 2303-2316. |
26 | Xie Qiuxia, Menenti M, Jia Li. Improving the AMSR-E/NASA soil moisture data product using in-situ measurements from the Tibetan Plateau[J/OL]. Remote Sensing, 2019, 11(23) [2020-02-23]. . |
27 | Van der Velde R, Salama M S, Rellarin T, et al. Long term soil moisture mapping over the Tibetan Plateau using special sensor microwave[J]. Hydrology and Earth System Sciences, 2014, 10(5): 6629-6667. |
28 | Li Chengwei, Lu Hui, Yang Kun, et al. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau[J/OL]. Remote Sensing, 2018, 10(4) [2020-02-23]. . |
29 | Cheng Meilin, Zhong Lei, Ma Yaoming, et al. A study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau[J/OL]. Remote Sensing, 2019, 11(10) [2020-02-23]. . |
30 | Chen Yingying, Yang Kun, Qin Jun, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4466-4475. |
31 | Meng Xianhong, Li Ruiqing, Luan Lan. Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51: 4157-4168. |
32 | Shi Chunxiang, Jiang Lipeng, Zhu Zhi, et al. Simulation and assessment of soil moisture in China based on CLDAS2.0 driving data[J]. Jiangsu Agricultural Science, 2018, 46(4): 231-236. |
师春香, 姜立鹏, 朱智, 等. 基于CLDAS2.0驱动数据的中国区域土壤湿度模拟与评估[J]. 江苏农业科学, 2018, 46(4): 231-236. | |
33 | Wang Chenghai, Shi Rui. Simulation of the land surface processes in the western Tibetan Plateau in summer[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 73-81. |
王澄海, 师锐. 青藏高原西部陆面过程特征的模拟分析[J]. 冰川冻土, 2007, 29(1): 73-81. | |
34 | Wang Chenghai, Shi Rui, Zuo Hongchao. Analysis on simulation of characteristic of land surface in western Qinghai-Xizang Plateau during frozen and thawing[J]. Plateau Meteorology, 2008, 27(2): 239-248. |
王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析[J]. 高原气象, 2008, 27(2): 239-248. | |
35 | Zhang Shiqiang, Ding Yongjian, Lu Jian, et al. Simulative study of water-heat process in the Tibetan Plateau (II): soil temperature[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 95-99. |
张世强, 丁永建, 卢健, 等. 青藏高原土壤水热过程模拟研究(II): 土壤温度[J]. 冰川冻土, 2005, 27(1): 95-99. | |
36 | Zhao Lin, Li Ren, Ding Yongjian. Simulation on the soil water-thermal characteristics of the active layer in Tanggula Range[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 930-937. |
赵林, 李韧, 丁永建. 唐古拉地区活动层土壤水热特征的模拟研究[J]. 冰川冻土, 2008, 30(6): 930-937. | |
37 | Chen Haishan, Xiong Mingming, Sha Wenyu. Simulation of land surface processes over China and its validation: Part I: soil temperature[J]. Scientia Meteorologica Sinica, 2010, 30(5): 621-630. |
陈海山, 熊明明, 沙文钰. CLM3.0对中国区域陆面过程的模拟试验及评估I: 土壤温度[J]. 气象科学, 2010, 30(5): 621-630. | |
38 | Xiong Mingming, Chen Haishan, Yu Miao. Simulation of land surface processes over China and its validation: Part II: soil moisture[J]. Scientia Meteorologica Sinica, 2011, 31(1): 1-10. |
熊明明, 陈海山, 俞淼. CLM3.0对中国区域陆面过程的模拟试验及评估II: 土壤湿度[J]. 气象科学, 2011, 31(1): 1-10. | |
39 | Ding Xu. The numerical simulation study of soil moisture and soil temperature[D]. Chengdu: Chengdu University of Information Technology, 2018. |
丁旭. 青藏高原土壤湿度和土壤温度的数值模拟研究[D]. 成都: 成都信息工程大学, 2018. | |
40 | Koster R D, SuarezM J. Relative contributions of land and ocean processes to precipitation variability[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D7): 13775-13790. |
41 | Zhou Yushu, Gao Shouting, Deng Guo, et al. Effect of the winter/spring soil temperature of the Tibetan Plateau on the summer precipitation over the mid-lower reaches of the Yangtze River[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(5): 611-619. |
周玉淑, 高守亭, 邓国, 等. 青藏高原冬春季地温异常对长江中下游夏季旱涝影响的研究[J]. 南京气象学院学报, 2002, 25(5): 611-619. | |
42 | Li Xiuzhen, Tang Xuzi, Li Shihua, et al. Impact of the spring sensible heat flux over the Tibetan Plateau on summer rainfall over east China and its role in rainfall prediction[J]. Acta Meteorologica Sinica, 2018, 76(6): 930-943. |
李秀珍, 唐旭紫, 李施华, 等. 春季青藏高原感热对中国东部夏季降水的影响和预测作用[J]. 气象学报, 2018, 76(6): 930-943. | |
43 | Namias J. Surface-atmosphere interactions as fundamental causes of droughts and other climatic fluctuations[M]// Changes of climate: proceedings of the Rome symposium organized by UNESCO and the World Meteorological Organization. Paris: UNESCO, 1963: 345-359. |
44 | Rowntree P R, Bolton J R. Simulation of the atmospheric response to soil moisture anomalies over Europe[J]. Quarterly Journal of the Royal Meteorological Society, 1983, 109(461): 501-526. |
45 | Yeh T C, Wetherald R I, Manabe S. The effect of soil moisture on the short-term climate and hydrology change: a numerical experiment[J]. Monthly Weather Review, 1984, 112(2): 474-490. |
46 | Chow K C, Chan J C L, Shi X, et a1. Time lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J]. International Journal of Climatology, 2008, 28(1): 55-67. |
47 | Wang Rui, Li Weiping, Liu Xin, et al. Simulation of the impacts of spring soil moisture over the Tibetan Plateau on summer precipitation in China[J]. Plateau Meteorology, 2009, 28(6): 1233-1241. |
王瑞, 李伟平, 刘新, 等. 青藏高原春季土壤湿度异常对我国夏季降水影响的模拟研究[J]. 高原气象, 2009, 28(6): 1233-1241. | |
48 | Zuo Zhiyan, Zhang Renhe. The relationship between China eastern summer precipitation and spring soil moisture[J]. Chinese Science Bulletin, 2007, 52(14): 1722-1724. |
左志燕, 张人禾. 中国东部夏季降水与春季土壤湿度的联系[J]. 科学通报, 2007, 52(14): 1722-1724. | |
49 | Li Dengxuan, Wang Chenghai. The relation between soil moisture over the Tibetan Plateau in spring and summer precipitation in the eastern China[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 89-99. |
李登宣, 王澄海. 青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J]. 冰川冻土, 2016, 38(1): 89-99. | |
50 | Deng Mingshan, Meng Xianhong, Ma Ying, et al. Analysis on soil moisture characteristics of Tibetan Plateau based on GLDAS[J]. Journal of Arid Meteorology, 2018, 36(4): 595-602. |
邓明珊, 孟宪红, 马英, 等. 基于GLDAS产品的青藏高原土壤湿度特征分析[J]. 干旱气象, 2018, 36(4): 595-602. | |
51 | Li Guoping, Duan Tingyang, Gong Yuanfa, et al. A composite study of the surface fluxes on the Tibetan Plateau[J]. Acta Meteorologica Sinica, 2002, 60(4): 453-460. |
李国平, 段廷扬, 巩远发, 等. 青藏高原近地层通量特征的合成分析[J]. 气象学报, 2002, 60(4): 453-460. | |
52 | Xia Kun, Luo Yong, Li Weiping. Simulation of freezing and melting of soil on the northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2011, 56(20): 2145-2155. |
夏坤, 罗勇, 李伟平. 青藏高原东北部土壤冻融过程的数值模拟[J]. 科学通报, 2011, 56(22): 1828-1838. | |
53 | Li Lin, Zhu Xide, Wang Qingchun, et al. Mapping and analyses of permafrost change in the Qinghai Plateau using GIS[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 320-328. |
李林, 朱西德, 汪青春, 等. 青海高原冻土退化的若干事实揭示[J]. 冰川冻土, 2005, 27(3): 320-328. |
[1] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[2] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[3] | 张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45. |
[4] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[8] | 王世金,魏彦强,牛春华,张云飞. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43(6): 1848-1860. |
[9] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[10] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[11] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[12] | 陈学平,周勇,杨艳刚,陶双成,刘磊,刘卓成,季双旋. 不同覆盖措施对高寒地区剥离的草皮块堆放温湿度及成活的影响[J]. 冰川冻土, 2021, 43(5): 1334-1343. |
[13] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[14] | 刘艺阗, 姚济敏, 赵林, 肖瑶, 乔永平, 史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[15] | 张明礼, 王斌, 王得楷, 叶伟林, 郭宗云, 高樯, 岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000