1 |
Wang Ninglian, Liu Shiyin, Wu Qingbai, et al. Recent progress in the study of the change of cryosphere in the northern hemisphere and its impacts on climate and environment[J]. China Basic Science, 2015, 17(2): 9-14.
|
|
王宁练, 刘时银, 吴青柏 等. 北半球冰冻圈变化及其对气候环境的影响[J]. 中国基础科学, 2015, 17(2): 9-14.
|
2 |
Oerlemans J. Quantifying global warming from the retreat of glaciers[J]. Science, 1994, 264(5156): 243-245.
|
3 |
Shi Yafeng. Glacier recession and lake shrinkage indicating a climatic warming and drying trend in Central Asia[J]. Journal of Geographical Sciences, 1990, 45(1): 1-13.
|
|
施雅风. 山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望[J]. 地理学报, 1990, 45(1): 1-13.
|
4 |
Shi Yafeng, Liu Shiyin. The calculation of Chinese glacier’s response to the globe climatic warming in the 21th century[J]. Chinese Science Bulletin, 2000, 45(4): 434-438.
|
|
施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4): 434-438.
|
5 |
Yao Tandong, Yao Zhijun. Impacts of glacial retreat on runoff on Tibetan Plateau[J].Chinese Journal of Nature, 2010, 32(1): 4-8.
|
|
姚檀栋, 姚治君. 青藏高原冰川退缩对河水径流的影响[J]. 自然杂志, 2010, 32(1): 4-8.
|
6 |
Matthias H, Regine H. A new model for global glacier change and sea-level rise[J]. Frontiers in Earth Science, 2015, 3(54): 1-22.
|
7 |
Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4(7): 587-592.
|
8 |
Duethmann D, Menz C, Jiang T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024.
|
9 |
Pu Jianchen, Yao Tandong, Wang Ninglian, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the Past Century[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 517-522.
|
|
蒲健辰, 姚檀栋, 王宁练, 等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土, 2004, 26(5): 517-522.
|
10 |
Ren Jiawen. Updating assessment results of global cryospheric change from SPM of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1065-1067.
|
|
任贾文. 全球冰冻圈现状和未来变化的最新评估: IPCC WGI AR5 SPM发布[J]. 冰川冻土, 2013, 35(5): 1065-1067.
|
11 |
Dyurgerov M B, Meier M F. Twentieth century climate change: Evidence from small glaciers[J]. Proceedings of the National Academy of Sciences, 2000, 97(4): 1406-1411.
|
12 |
Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
13 |
Hewitt K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect’, Karakoram Himalaya[J]. Mountain Research & Development, 2005, 25(4): 332-340.
|
14 |
Cogley G J. Present and future states of Himalaya and Karakoram glaciers[J]. Annals of Glaciology, 2011, 52(59): 69,73.
|
15 |
Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4(3): 156-159.
|
16 |
Rankl M, Kienholz C, Braun M. Glacier changes in the Karakoram region mapped by multimission satellite imagery[J]. The Cryosphere, 2014, 8(3): 977-989.
|
17 |
Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early twenty-first century[J]. Nature Geoscience, 2012, 5(5): 322-325.
|
18 |
Farinotti D, Immerzeel W W, Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
|
19 |
Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.
|
20 |
Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488(7412): 495-498.
|
21 |
Bhambri R, Hewitt K, Kawishwar P, et al. Surge-type and surge-modified glaciers in the Karakoram[J]. Scientific Reports, 2017, 7(1): 15391.
|
22 |
Daniel F, W.I Walter, Remco J K,et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
|
23 |
Chen An’an, Wang Ninglian, Guo Zhongming, et al. Glacier variations and rising temperature in the Mt. Kenya since the Last Glacial Maximum[J]. Journal of Mountain Science, 2018, 15(6): 1268-1282.
|
24 |
Zhang Zhengyong, Liu Lin, Xu Liping. Response mechanism of glacial distribution patterns to geographical factors[J]. Ecology and Environmental Sciences, 2018, 27(2): 290-296.
|
|
张正勇,刘琳,徐丽萍.冰川分布格局对地理因子响应机制[J]. 生态环境学报, 2018, 27(2): 290-296.
|
25 |
Javed H, Rijan B K, Ahuti S, et al. Predictions of future hydrological conditions and contribution of snow and ice melt in total discharge of Shigar River Basin in Central Karakoram, Pakistan[J]. Sciences in Cold and Arid Regions, 2017, 9(6): 511-524.
|
26 |
Mukhopadhyay B, Khan A. Rising river flows and glacial mass balance in central Karakoram[J]. Journal of Hydrology, 2014, 513: 192-203.
|
27 |
Zhao Chunying. Study on object extraction based on feature from hyperspectral image[D]. Changchun University of Science and Technology, 2017.
|
|
赵春英. 基于高光谱图像的目标特征提取方法研究[D]. 长春理工大学, 2017.
|
28 |
Zhang Tao, Liu Jun, Yang Keming, et al. Fusion algorithm for hyperspectral remote sensing image conbined with harmonic analysis and Gram-Schmidt transform[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 1024-1047[张涛, 刘军, 杨可明, 等. 结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J]. 测绘学报, 2015, 44(9): 1042-1047.]
|
29 |
Yan Lili, Wang Jian. Study of extracting glacier information from remote sensing[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 110-118.
|
|
彦立利, 王建. 基于遥感的冰川信息提取方法研究进展[J]. 冰川冻土, 2013, 35(1): 110-118.
|
30 |
Zhang Minghua. Extracting the temperate glacier information in the Mount Namjagbarwa, Tibet autonomous region, based on ETM+ image[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 226-232.
|
|
张明华.基于ETM+影像的西藏南迦巴瓦峰地区海洋性冰川信息提取[J]. 冰川冻土, 2005, 27(2): 226-232.
|
31 |
Guo Wanqin, Liu Shiyin, Xu Junli, et al. The second Chinese glacier inventory: data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.
|
32 |
Shi Yafeng. The growth of Chinese Ice Science[M]. Beijing: Science and Technology Literature Press, 1995.
|
|
施雅风. 中国冰川学的成长[M]. 北京:科学技术文献出版社, 1995.
|
33 |
Qin Dahe. Glossary of cryosphere science[M]. Beijing: China Meteorological Press, 2014.
|
|
秦大河. 冰冻圈科学词典[M]. 北京: 气象出版社, 2014.
|
34 |
Lin Hui, Li Gang, Lan Cuo, et al. A decreasing glacier mass balance gradient from the edge of the upper Tarim basin to the Karakoram during 2000-2014[J]. Scientific Reports, 2017, 7(1): 6712-6719.
|
35 |
Barrand N E, Murray T. Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya[J]. Arctic, Antarctic, and Alpine Research, 2006, 38(4): 489-498.
|
36 |
Copland L, Sharp M J, Dowdeswell J A. The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic[J]. Annals of Glaciology, 2003, 36(1): 73-81.
|
37 |
Hewitt K. Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources[M]. Springer Science & Business Media, 2014.
|
38 |
Hewitt K. Glaciers receive a surge of attention in the Karakoram Himalaya[J]. Eos Transactions American Geophysical Union, 1998, 79(8): 104-105.
|
39 |
Bolch T, Menounos B, Wheate R. Landsat-based inventory of glaciers in western Canada, 1985-2005[J]. Remote Sensing of Environment, 2010, 114(1): 127-137.
|
40 |
Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.
|
|
郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.
|
41 |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
|
|
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
|
42 |
Nuimura T, Sakai A, Taniguchi K, et al. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers[J]. The Cryosphere, 2015, 9(3): 849-864.
|
43 |
Zhang Zhen, Liu Shiyin, Zhang Yong, et al. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data[J]. Journal of Glaciology, 2018, 64(245): 397-406.
|
44 |
Nuth C, Kääb A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5(1): 271-290.
|
45 |
Gardelle J, Berthier E, Arnaud Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing[J]. Journal of Glaciology, 2012, 58(208): 419-422.
|
46 |
Wang Yuzhe, Ren Jiawen, Qin Dahe, et al. Regional glacier volume change derived from satellite data: a case study in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 583-0592.
|
|
王玉哲, 任贾文, 秦大河, 等. 利用卫星资料反演区域冰川冰量变化的尝试—以祁连山为例[J]. 冰川冻土, 2013, 35(3): 583-592.
|
47 |
Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011,5(2): 349-358.
|
48 |
Thibert E, Blanc R, Vincent C, et al. Instruments and Methods Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps[J]. Journal of Glaciology, 2008, 54(186): 522-532.
|
49 |
Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7(3): 877-887.
|
50 |
Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
|
51 |
Koblet T, Gärtner-Roer I, Zemp M, et al. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959 - 99) - Part 1: Determination of length, area, and volume changes[J]. The Cryosphere, 2010, 4(3): 333-343.
|