1 |
Fang Lili, Qi Jilin, Ma Wei. Freeze-thaw induced changes in soil structure and its relationship with variations in strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435 - 440.
|
|
方丽莉, 齐吉琳, 马巍. 冻融作用对土结构性的影响及其导致的强度变化[J]. 冰川冻土, 2012, 34(2): 435 - 440.
|
2 |
Shen Zhujiang. Weathering resistant design: an important aspect of future development of geotechnical engineering design[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 866 - 869.
|
|
沈珠江. 抗风化设计——未来岩土工程设计的一个重要内容[J]. 岩土工程学报, 2004, 26(6): 866 - 869.
|
3 |
Zhao Qian, Yang Jinxi, Zhao Jinping. Experimental study on permeability of undisturbed loess under freezing-thawing and drying-wetting cycling conditions[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 119-126.
|
|
赵茜, 杨金熹, 赵晋萍. 冻融和干湿循环对原状黄土渗透系数的影响[J]. 中国地质灾害与防治学报, 2020, 31(2): 119-126.
|
4 |
Ni Wankui, Shi Huaqiang. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922 - 927.
|
|
倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922 - 927.
|
5 |
Ye Wanjun, Li Changqing, Dong Xihao, et al. Study on damage identification of loess microstructure and macro mechanical response under freezing and thawing conditions[J]. Journal of Glaciology and Geocryology, 2018, 40(3): 546 - 555.
|
|
叶万军, 李长清, 董西好, 等. 冻融环境下黄土微结构损伤识别与宏观力学响应规律研究[J]. 冰川冻土, 2018, 40(3): 546 - 555.
|
6 |
Fang Jianhong, Chen Xin, Xu Anhua, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 62 - 69.
|
|
房建宏, 陈鑫, 徐安花, 等. 冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土, 2018, 40(1): 62 - 69.
|
7 |
Kozłowski T, Kurpiaswarianek K, Walaszczyk Ł. Application of SEM to analysis of permeability coefficient of cohesive soils[J]. Diabetes Care, 2011, 33(10): 2244 - 2249.
|
8 |
Xiao Donghui, Feng Wenjie, Zhang Ze. The changing rule of loess’s porosity under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 907 - 912.
|
|
肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土, 2014, 36(4): 907 - 912.
|
9 |
Wang Tiehang, Yang Tao, Lu Jie. Influence of dry density and freezing-thawing cycles on anisotropic permeability of loess[J]. Rock and Soil Mechanics, 2016, 37(): 72 - 78.
|
|
王铁行, 杨涛, 鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(): 72 - 78.
|
10 |
Xu Jian, Wang Zhangquan, Ren Jianwei, et al. Comparative study on permeability characteristics of undisturbed and remolded loess under freezing-thawing condition[J]. Journal of Engineering Geology, 2017, 25(2): 292 - 299.
|
|
许健, 王掌权, 任建威, 等. 原状与重塑黄土冻融过程渗透特性对比试验研究[J]. 工程地质学报, 2017, 25(2): 292 - 299.
|
11 |
Xiao Donghui, Feng Wenjie, Zhang Ze, et al. Research on the relationship between permeability and construction feature of loess under the freeze-thaw cycles[J]. Hydrogeology and Engineering Geology, 2015, 42(4): 43 - 49.
|
|
肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水分地质工程地质, 2015, 42(4): 43 - 49.
|
12 |
Kong Lingrong. Study on pore distribution and permeability under different vertical stress levels due to consolidation of soft clay[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(): 1664 - 1666, 1682.
|
|
孔令荣. 不同固结压力软粘土的孔隙分布与渗透系数研究[J]. 地下空间与工程学报, 2011, 7(): 1664 - 1666, 1682.
|
13 |
Tang Yongjin, Wang Pengfei, Shao Zhendong. Mercury intrusion porosimetry and error analysis[J]. Experimental Technology and Management, 2015, 32(5): 50 - 54.
|
|
汤永净, 汪鹏飞, 邵振东. 压汞实验和误差分析[J]. 实验技术与管理, 2015, 32(5): 50 - 54.
|
14 |
Qi Tian. Theoretical and experimental studies on one-dimensional nonlinear consolidation of soft soil[D]. Hangzhou: Zhejiang University, 2008.
|
|
齐添. 软土一维非线性固结理论与试验对比研究[D]. 杭州: 浙江大学, 2008.
|
15 |
Zou Shengfeng, Li Jinzhu, Wang Zhongjin, et al. Seepage test and empirical models for soils based on GDS apparatus[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(5): 856 - 862.
|
|
邹圣锋, 李金柱, 王忠瑾, 等. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856 - 862.
|
16 |
Zhao Qian. Investigation on the influence of freezing-thawing cycle and drying-wetting alternation on the permeability anisotropy and spatial variability of loess[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
|
|
赵茜. 冻融循环与干湿交替对黄土渗透各向异性及空间分异性的影响研究[D]. 西安: 西安建筑科技大学, 2019.
|
17 |
Mair R J. Tunneling and geotechnics: new horizons[J]. Geotechnique, 2008, 58(9): 695 - 736.
|
18 |
Al-Sharrad M A, Gallipoli D, Wheeler S J. Experimental Investigation of evolving anisotropy in unsaturated soils[J]. Géotechnique, 2017, 67(12): 1033 - 1049.
|
19 |
Witt K J, Brauns J. Permeability-anisotropy due to particle shape[J]. Journal of Geotechnical Engineering, 1983, 109(9): 1181 - 1187.
|
20 |
Chan H T, Kenny T C. Laboratory investigation of permeability ratio of New Liskeard varved soil[J]. Canadian Geotechnical Journal, 1973, 10(3): 453 - 472.
|
21 |
Basak P. Soil structure and its effects on hydraulic conductivity[J]. Soil Science, 1972, 114(6): 417 - 422.
|
22 |
Zhou Jian, Xu Jie, Yu Lianggui, et al. Study on microscopic mechanism regarding permeability anisotropy of Kaolin-Montmorillonite mixed clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 39(1): 1 - 9.
|
|
周建, 徐杰, 余良贵, 等. 高岭-蒙脱混合黏土渗透各向异性的微观机理研究[J]. 岩土工程学报, 2018, 39(1): 1 - 9.
|
23 |
Adams A L, Nordquist T J, Germaine J T, et al. Permeability anisotropy and resistivity anisotropy of mechanically compressed mudrocks[J]. Canadian Geotechnical Journal, 2016, 53(9): 1474 - 1482.
|
24 |
Liang Yan, Xing Xianli, Li Tonglu, et al. Study of the anisotropic permeability and mechanism of Q3 loess[J]. Rock and Soil Mechanics, 2012, 33(5): 1313 - 1318.
|
|
梁燕, 邢鲜丽, 李同录, 等. 晚更新世黄土渗透性的各向异性及其机制研究[J]. 岩土力学, 2012, 33(5): 1313 - 1318.
|
25 |
Li Yuqi, Zhou Xuan. Study on the effect of anisotropic permeability on the behavior of an excavation[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1250 - 1257.
|
|
李玉岐, 周旋. 渗透各向异性对基坑工程性状的影响研究[J]. 地下空间与工程学报, 2017, 13(5): 1250 - 1257.
|
26 |
Zhang D M, Ma L X, Zhang J, et al. Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104 - 115.
|
27 |
Ke Han, Wu Xiaowen, Zhang Jun, et al. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957 - 1964.
|
|
柯瀚, 吴小雯, 张俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957 - 1964.
|
28 |
Nanjing Hydraulic Research Institute. standard for geotechnical test method [S]. Beijing: China Planning Press, 1999. [南京水利科学研究. 土工试验方法标准[S]. 北京: 中国计划出版社, 1999.]
|
29 |
Qian Hongjin, Wang Jitang, Luo Yusheng. Collapsible loess foundation[M]. Beijing: China Architecture & Building Press, 1985: 24 - 25.
|
|
钱鸿缙, 王继唐, 罗宇生. 湿陷性黄土地基[M]. 北京: 中国建筑工业出版社, 1985: 24 - 25.
|
30 |
Liu Dongsheng. Loess and environment[M]. Beijing: Science Press, 2007: 7 - 12.
|
|
刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985: 7 - 12.
|
31 |
Lei Xiangyi. Pore types and collapsibility of loess in China[J]. Science in China (Series B), 1987, 12: 1309 - 1316.
|
|
雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987, 12: 1309 - 1316.
|
32 |
Zhao Qian, Su Lijun, Liu Hua, et al. Experimental study on influence of particle size composition on permeability coefficient anisotropy of loess[J]. Journal of Central South University (Science and Technology), 2020, 51(6): 1615-1626.
|
|
赵茜, 苏立君, 刘华, 等. 黄土粒度组成对其渗透系数各向异性影响的试验研究[J]. 中南大学学报(自然科学版), 2020, 51(6): 1615-1626.
|