冰川冻土 ›› 2020, Vol. 42 ›› Issue (3): 1027-1035.doi: 10.7522/j.issn.1000-0240.2020.0075
张宝贵1,2(), 赵宇婷1, 刘晓娇1, 刘敏1, 张威2,3, 陈拓2,4, 刘光琇2,3(
)
收稿日期:
2018-04-10
修回日期:
2019-08-19
出版日期:
2020-10-31
发布日期:
2020-12-08
通讯作者:
刘光琇
E-mail:zbg2007.cool@163.com;liugx@lzb.ac.cn
作者简介:
张宝贵(1986 - ), 男, 山西忻州人, 副教授, 2016年在中国科学院寒区旱区环境与工程研究所获博士学位, 从事环境微生物研究. E-mail: zbg2007.cool@163.com
基金资助:
Baogui ZHANG1,2(), Yuting ZHAO1, Xiaojiao LIU1, Min LIU1, Wei ZHANG2,3, Tuo CHEN2,4, Guangxiu LIU2,3(
)
Received:
2018-04-10
Revised:
2019-08-19
Online:
2020-10-31
Published:
2020-12-08
Contact:
Guangxiu LIU
E-mail:zbg2007.cool@163.com;liugx@lzb.ac.cn
摘要:
高寒草甸是青藏高原面积最大的草地类型, 对全球生态环境的影响十分巨大。然而在外界干扰下, 使得本身就很脆弱的高寒草甸发生了不同程度的退化。为探究翻耕补播对土壤微生物的影响, 以疏勒河上游不同季节(4月、 6月、 9月)原生高寒草甸、 退化草甸和翻耕补播草甸土壤为对象, 研究了土壤可培养细菌数量的季节变化及其影响因素。结果表明: 研究区域可培养细菌数量介于4.3×106 ~ 4.5×107 CFU·g-1之间, 不同季节退化草甸与翻耕补播草甸土壤细菌数量均显著低于原生高寒草甸, 且不同类型高寒草甸生态系统下可培养细菌具有明显的季节差异: 原生高寒草甸生态系统下土壤细菌在6月生物量最高, 4月最低; 而退化草甸与翻耕补播草甸土壤细菌生物量并没有表现出明显的季节波动; 相关分析表明, 可培养细菌数量与土壤全氮、 植被盖度及土壤含水量存在极显著正相关关系。研究发现, 翻耕补播措施并没有恢复该区域微生物数量, 研究结果对于认识高寒草甸生态系统的退化成因, 判断恢复措施的有效性和合理性具有重要意义。
中图分类号:
张宝贵, 赵宇婷, 刘晓娇, 刘敏, 张威, 陈拓, 刘光琇. 翻耕补播对青藏高原疏勒河上游高寒草甸土壤可培养微生物数量的影响[J]. 冰川冻土, 2020, 42(3): 1027-1035.
Baogui ZHANG, Yuting ZHAO, Xiaojiao LIU, Min LIU, Wei ZHANG, Tuo CHEN, Guangxiu LIU. Research on response characteristics of alpine meadow microbial population to tillage in the upstream regions of Shule River, Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 1027-1035.
表2
不同季节、 不同类型草甸土壤理化性质及植被特征"
参数 | 草甸类型 | ||
---|---|---|---|
原生高寒草甸 | 退化草甸 | 翻耕补播草甸 | |
含水量/% | 32.45±3.27a | 12.32±0.93b | 10.42±2.24b |
pH值 | 8.47±0.18a | 8.23±0.13a | 8.05±0.34a |
有机碳/(g·kg-1) | 18.60±2.8a | 6.70±0.2b | 6.40±0.1b |
全氮/(g·kg-1) | 1.40±0.17a | 0.74a±0.13b | 0.60±0.02b |
电导率/(μS·cm-1) | 165.63±1.05a | 106.3±6.4b | 99.5±7.05b |
植被盖度/% | 42.67±0.88a | 20.33±0.33b | 11.33±0.33c |
植物物种总数 | 14.00±0.58a | 12.00±0.57b | 10.00±0.58c |
1 | Ma Junjie, Li Ren, Liu Hongchao, et al. A review on the development of study on hydrothermal characteristics of active layer in permafrost areas in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 195 - 204. |
马俊杰, 李韧, 刘宏超, 等. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土, 2020, 42(1): 195 - 204. | |
2 | Li Hongqing, Zhang Fawei, Mao Shaojuan, et al. Effects of grazing density on ecosystem CO2 exchange of Haibei Alpine Kobresia humilis meadow in Qinghai[J]. Chinese Journal of Grassland, 2019, 41(2): 16 - 21. |
李红琴, 张法伟, 毛绍娟, 等. 放牧强度对青海海北高寒矮嵩草草甸碳交换的影响[J]. 中国草地学报, 2019, 41(2): 16 - 21. | |
3 | Liu Xingyuan, Long Ruijun, Shang Zhanhuan. Interactive mechanism of service function of alpine rangeland ecosystems in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2012, 32(24): 7688 - 7697. |
刘兴元, 龙瑞军, 尚占环. 青藏高原高寒草地生态系统服务功能的互作机制[J]. 生态学报, 2012, 32(24): 7688 - 7697. | |
4 | Xie Gaodi, Lu Chunxia, Xiao Yu, et al. The economic evaluation of grassland ecosystem services in Qinghai-Tibet Plateau[J]. Journal of mountain Science, 2003, 21(1): 50 - 55. |
谢高地, 鲁春霞, 肖玉, 等. 青藏高原高寒草地生态系统服务价值评估[J]. 山地学报, 2003, 21(1): 50 - 55. | |
5 | Qin Yu, Yi Shuhua, Ren Shilong, et al. Responses of typical grasslands in a semi-arid basin on the Qinghai-Tibetan Plateau to climate change and disturbances[J]. Environmental Earth Sciences, 2014, 71(3): 1421 - 1431. |
6 | Pan Xicai, Li Yanping, Yu Qihao, et al. Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau[J]. The Cryosphere, 2016, 10: 1591 - 1603. |
7 | Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527 - 2542. |
8 | Hu Guojie, Zhao Lin, Li Ren, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products[J]. Geoderma, 2019, 337: 893 - 905. |
9 | Ye Renzheng, Chang Juan. Study of groundwater in permafrost regions of China: status and process[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 183 - 196. |
叶仁政, 常娟. 中国冻土地下水研究现状与进展综述[J]. 冰川冻土, 2019, 41(1): 183 - 196. | |
10 | Cai Xiaobu, Zhou Jin, Qian Chen. Variation of soil microbial activities in alpine steppes different in degradation intensity in the north Tibet Plateau[J]. Acta Pedologica Sinca, 2008, 5(6): 1110 - 1118. |
蔡晓布, 周进, 钱成. 不同退化程度高寒草原土壤微生物活性变化特征研究[J]. 土壤学报, 2008, 5(6): 1110 - 1118. | |
11 | Hao Aihua, Xue Xian, Peng Fei, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2020, 40(3): 964 - 975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报, 2020, 40(3): 964 - 975. | |
12 | Yang Shu hua, Li Ren, Wu Tonghua, et al. The Variation characteristics of different freeze-thaw status in the near surface soil and the relationship with temperature over the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1377 - 1387. |
杨淑华, 李韧, 吴通华, 等. 青藏高原近地表土壤不同冻融状态的变化特征及其与气温的关系[J]. 冰川冻土, 2019, 41(6): 1377 - 1387. | |
13 | Zhang Xiaolan, Liu Guimin, Li Xinxing, et al. The response of soil bacteria to thaw slump in a desert steppe in Beiluhe area, Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 977 - 985. |
张晓兰, 刘桂民, 李新星, 等. 青藏高原北麓河地区荒漠草原土壤细菌对热融滑塌的响应[J]. 冰川冻土, 2019, 41(4): 977 - 985. | |
14 | Zhang Yi, Wen Xiaohang, Wang Shaoying, et al. Analysis of the near-surface micrometeorology and CO2 flux over the Maqu alpine meadow in summer[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 54 - 63. |
张懿, 文小航, 王少影, 等. 玛曲高寒草甸夏季近地层微气象和CO2通量特征分析[J]. 冰川冻土, 2019, 41(1): 54 - 63. | |
15 | Zhang Qian, Ma Li, Zhang Zhonghua, et al. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: degradation status, restoration measures, effects and prospects[J]. Acta Ecologica Sinica, 2020, 39(20): 7441 - 7451. |
张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复: 退化现状、 恢复措施、 效应与展望[J]. 生态学报, 2020, 39(20): 7441 - 7451. | |
16 | Zhang Xiuyun, Yao Yubi, Wang Runyuan. Grassland degradation evaluation and its protection countermeasures on subalpine meadow[J]. Bulletin of soil and water conservation, 2008, 28(6): 142 - 145. |
张秀云, 姚玉璧, 王润元. 亚高山草甸类草地退化评估及草地保护对策[J]. 水土保持通报, 2008, 28(6): 142 - 145. | |
17 | Niu Shuli, Jiang Gaoming. Function of artificial grassland in restoration of degraded natural grassland and its research advance[J]. Chinese Journal of Applied Ecology, 2004, 15(9): 1662 - 1666. |
牛书丽, 蒋高明. 人工草地在退化草地恢复中的作用及其研究现状[J]. 应用生态学报, 2004, 15(9): 1662 - 1666. | |
18 | Ma Yushou, Zhou Huakun, Shao Xinqing, et al. Recovery techniques and demonstration of degraded alpine ecosystems in the source Region of Three Rivers[J]. Acta Ecologica Sinica, 2016, 36 (22): 7078 - 7082. |
马玉寿, 周华坤, 邵新庆, 等. 三江源区退化高寒生态系统恢复技术与示范[J]. 生态学报, 2016, 36(22): 7078 - 7082. | |
19 | Franzluebbers A J, Stuedemann J A, Schomberg H H, et al. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA[J]. Soil biology and biochemistry, 2000, 32(4): 469 - 478. |
20 | Lal R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29: 437 - 450. |
21 | Wu Gaolin, Liu Zhenheng, Zhang Lei, et al. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland[J]. Plant Soil, 2010, 333(1/2): 469 - 479. |
22 | Wu Gaolin, Li Wei, Zhao Lingping, et al. Artificial management improves soil moisture, C, N and P in an alpine sandy meadow of western China[J]. Pedosphere, 2011, 21(3): 407 - 412. |
23 | Ren Shilong, Yi Shuhua, Chen Jianjun, et al. Responses of green fractional vegetation cover of alpine grassland to climate warming and human activities[J]. Pratacultural Science, 2013, 30(4): 506 - 514. |
任世龙, 宜树华, 陈建军, 等. 高山草地植被盖度对气候变暖和人类活动的响应[J]. 草业科学, 2013, 30(4): 506 - 514. | |
24 | Luo Yayong, Meng Qingtao, Zhang Jinhui, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1298 - 1305. |
罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、 生产力与土壤特性的关系[J]. 冰川冻土, 2014, 36(5): 1298 - 1305. | |
25 | Falkowski 1 P G, Fenchel T, Delong E F. The microbial engines that drive earth’s biogeochemical cycles[J]. Science, 2008, 320(5879): 1034 - 1039. |
26 | Han Zhiguang, Sui Xin, Li Mengsha. Effects of forest age on soil fungal community in a northern temperate ecosystem[J]. Indian Journal of Microbiology, 2016, 56(3): 328 - 334. |
27 | Garcia C, Hernander T. Biological and biochemical indicators in derelict soils subject to erosion[J]. Soil Biology and Biochemistry, 1997, 29(2): 171 - 177. |
28 | Zhang Xinfang, Zhao Lin, Xu Shijian, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types[J]. Journal of Applied Microbiology, 2013, 114(4): 1054 - 1065. |
29 | Zhang Binglin, Wu Xiukun, Zhang Wei, et al. Diversity and succession of Actinobacteria in the forelands of the Tianshan Glacier, China[J]. Geomicrobiology Journal, 2016, 33(8): 716 - 723. |
30 | Zhang Baogui, Wu Xiukun, Zhang Gaosen, et al. Response characteristics of soil bacterial community structure to permafrost degradation in the upstream regions of the Shule River Basin, Qinghai-Tibet Plateau[J]. Geomicrobiology Journal, 2017, 34(4): 300 - 308. |
31 | Zhang Baogui, Liu Xiaojiao, Liu Min, et al. Changing of culturable bacterial number in different types of degraded permafrost in the upstream regions of the Shule River basin[J]. Chinese Journal of Ecology, 2017, 36(10): 2886 - 2893. |
张宝贵, 刘晓娇, 刘敏, 等. 疏勒河上游不同退化类型冻土可培养细菌数量变化[J]. 生态学杂志, 2017, 36(10): 2886 - 2893. | |
32 | Zhang Baogui, Liu Xiaojiao, Liu Min, et al. Characteristics of culturable bacteria diversity among different permafrost types in the upstream regions of the Shule River basin[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 156 - 165. |
张宝贵, 刘晓娇, 刘敏, 等. 青藏高原疏勒河上游不同类型冻土可培养细菌多样性特征研究[J]. 冰川冻土, 2018, 40(1): 156 - 165. | |
33 | White D, Crosbie J D, Atkinson D, et al. Effect of an introduced inoculum on soil microbial diversity[J]. FEMS Microbiology Ecology, 1994, 14(2): 169 - 178. |
34 | Yi Shuhua, Wang Zenru, Xie Xia, et al. Estimation of fractional vegetation cover and its relation with permafrost in the upstream regions of Shule River basin[J]. Pratacultural Science, 2011, 28(3): 353 - 358. |
宜树华, 王增如, 谢霞, 等. 高寒草地植被盖度估算及其与冻土的关系[J]. 草业科学, 2011, 28(3): 353 - 358. | |
35 | Qin Yu. Study on the effect of climate change and anthropogenic disturbances on alpine grassland in permafrost region on the Qilian mountains[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2013. |
秦彧. 气候变化和人类活动对祁连山多年冻土区高寒草地的影响研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2013. | |
36 | Wang Wei, Yan Zhongxin. Research on microbial quantity dynamic of soil on alpine meadow in Chengduo region[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2014, 44(4): 13 - 15. |
王伟, 闫忠心. 称多地区不同类型高寒草甸土壤微生物数量动态研究[J]. 青海畜牧兽医杂志, 2014, 44(4): 13 - 15. | |
37 | Tang Jie, Xu Qingrui, Wang Liming, et al. Soil bacterial community diversity under different stages of degradation in Zoige Wetland[J]. Microbiology China, 2011, 38(5): 677 - 686. |
唐杰, 徐青锐, 王立明, 等. 若尔盖高原湿地不同退化阶段的土壤细菌群落多样性[J]. 微生物学通报, 2011, 38(5): 677 - 686. | |
38 | Yu Jianlong, Shi Hongxiao. Changes of microbes population in the different degraded alpine meadows on the Qinghai- Tibetan Plateau[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20 (11): 77 - 81. |
于健龙, 石红霄. 高寒草甸不同退化程度土壤微生物数量变化及影响因子[J]. 西北农业学报, 2011, 20(11): 77 - 81. | |
39 | Lin Chaofeng, Chen Zhanquan, Xue Quanhong, et al. Effect of vegetation degradation on soil nutrients and microflora in the Sanjiangyuan region of Qinghai, China[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13(6): 788 - 793. |
林超峰, 陈占全, 薛泉宏, 等. 青海三江源区植被退化对土壤养分和微生物区系的影响[J]. 应用与环境生物学报, 2007, 13(6): 788 - 793. | |
40 | Wu Lisha, Tang Jie, Luo Qiang, et al. Study on the relationship between soil enzyme activities and soil physico-chemical properties with microorganism of degraded soil from Zoige Wetland[J]. Chinese Journal of Soil Science, 2012, 43(1): 52 - 59. |
吴俐莎, 唐杰, 罗强, 等. 若尔盖湿地土壤酶活性和理化性质与微生物关系的研究[J]. 土壤通报, 2012, 43(1): 52 - 59. | |
41 | Jiang Hua, Bi Yufen, Zhu Dongbin, et al. Studies on soil microbial populations and enzyme activities of degraded hilly meadow under different vegetative restoration measures in Yunnan Province[J]. Acta Agrestia Sinica, 2008, 16(3): 256 - 261. |
姜华, 毕玉芬, 朱栋斌, 等. 恢复措施对云南退化山地草甸土壤微生物和酶活性的影响[J]. 草地学报, 2008, 16(3): 256 - 261. | |
42 | Wang Lu, Dong Xiaopei, Zhang Wei, et al. Quantitative characteristics of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 436 - 441. |
王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011, 33(2): 436 - 441. | |
43 | Wu Xiukun, Zhang Gaosen, Zhang Wei, et al. Variations in culturable bacterial communities and biochemical properties in the foreland of the retreating Tianshan No.1 Glacier[J]. Brazilian Journal of Microbiology, 2018, 357: 1 - 9. |
44 | Cowan D A, Russell N J, Mamais A, et al. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass[J]. Extremophiles, 2002, 6: 431 - 436. |
45 | Steven B, Briggs G, McKay C P, et al. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods[J]. FEMS Microbiology Ecology, 2006, 59(2): 513 - 523. |
46 | Feng Huyuan, Ma Xiaojun, Zhang Gaosen, et al. Culturing and counting the microbial cells in permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 182 - 187. |
冯虎元, 马晓军, 章高森, 等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土, 2004, 26(2): 182 - 187. | |
47 | Zhang Qiangqiang, Jin Guili, Zhu Jinzhong, et al. Analyzing spatial patterns of prime plant population in mix-sowed artificial grassland with different established years[J]. Acta Agrestia Sinica, 2011, 19(2): 735 - 739. |
张强强, 靳瑰丽, 朱进忠, 等. 不同建植年限混播人工草地主要植物种群空间分布格局分析[J]. 草地学报, 2011,19(2): 735 - 739. | |
48 | Zhu Jianning, Peng Wendong, Li Yonghua, et al. Study on the effect of the shallow ploughing used to the desert steppe on soil water and the composition of herbage[J]. Heilongjiang Animal Science and Veterinary Medicine, 2014, 12: 108 - 111. |
朱建宁, 彭文栋, 李永华, 等. 荒漠草原采用浅翻耕改良对土壤水分及牧草组成的影响研究[J]. 黑龙江畜牧兽医, 2014, 12: 108 - 111. | |
49 | Li Naijie, Yi Shuhua, Qin Yu, et al. Effect of tillage on surface moisture and temperature of alpine meadow[J]. Pratacultural Science, 2012, 29(6): 883 - 888. |
李乃杰, 宜树华, 秦彧, 等. 翻耕对半干旱区高寒草甸地表水热条件的影响[J]. 草业科学, 2012, 29(6): 883 - 888. | |
50 | Ma Liping. Study on the dynamic of soil microorganism in alpine grassland under disturbance in Tianzhu[D]. Lanzhou: Gansu Agricultural University, 2004. |
马丽萍. 天祝高寒草地不同扰动生境土壤微生物数量时空动态研究[D]. 兰州: 甘肃农业大学, 2004. | |
51 | Jia Shuxia, Sun Bingjie, Liang Aizhen, et al. Effect of conservation tillage on microbial respiration of black soil[J]. Scientia Agricultura Sinica, 2015, 48(9): 1764 - 1773. |
贾淑霞, 孙冰洁, 梁爱珍, 等. 耕作措施对东北黑土微生物呼吸的影响[J]. 中国农业科学, 2015, 48(9): 1764 - 1773. | |
52 | Treonis A M, Austin E E, Buyer J S, et al. Effects of organic amendment and tillage on soil microorganisms and microfauna[J]. Applied Soil Ecology, 2010, 46(1): 103 - 110. |
53 | Xia Beicheng, Zhou Jizhong, Tiedje J M. Effect of vegetation on structure of soil microbial community[J]. Chinese Journal of Applied Ecology, 1998, 9(3): 196 - 300. |
夏北成, 周纪忠, Tiedje J M. 植被对土壤微生物群落结构的影响[J].应用生态学报, 1998, 9(3): 196 - 300. | |
54 | Shan Zhanhuan, Ding Lingling, Long Ruijun, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2007, 16(1): 34 - 40. |
尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J]. 草业学报, 2007, 16(1): 34 - 40. | |
55 | Liu Yang, Zhang Jian, Yan Bangguo, et al. Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, eastern Qinghai-Tibetan Plateau, China[J]. Chinese Journal of Plant Ecology, 2012, 36(5): 382 - 392. |
刘洋, 张健, 闫帮国, 等. 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、 氮和可培养微生物数量的季节动态[J]. 植物生态学, 2012, 36(5): 382 - 392. | |
56 | Wei Weidong, Liu Yuhong. Characteristics analysis of soil microbial biomass carbon on degraded alpine grassland[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(2): 205 - 210. |
魏卫东, 刘育红. 不同退化程度高寒草地土壤微生物量碳特征分析[J]. 西北农业学报, 2014, 23(2): 205 - 210. | |
57 | Gao Anshe, Zheng Shuhua, Zhao Mengli, et al. Soil organic carbon and total nitrogen content in different steppes[J]. Grassland of China, 2005, 27(6): 44 - 48. |
高安社, 郑淑华, 赵萌莉, 等. 不同草原类型土壤有机碳和全氮的差异[J]. 中国草地, 2005, 27(6): 44 - 48. | |
58 | Liljeroth E, Bååth E, Mathiasson I, et al. Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth[J]. Plant Soil, 1990, 127(1): 81 - 89. |
59 | Jones D L, Magthab E A, Gleeson D B, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the top soil[J]. Soil Biology and Biochemistry, 2018, 117: 72 - 82. |
60 | Anderson T H, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471 - 479. |
61 | Beyer L, Bölter M, Seppelt R D. Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands region of east Antarctica (Wilker land)[J]. Arctic, Antarctic, and Alpine Research, 2000, 32(1): 30 - 39. |
62 | Arenz B E, Blanchette R A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys[J]. Soil Biology and Biochemistry, 2011, 43(2): 308 - 315. |
63 | Kennedy A D. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis[J]. Arctic and Alpine Research, 1993, 23: 308 - 315. |
64 | Wang Yanhui, Rademacher P, Fölster H. The influences of environmental factors on the gaseous mass-loss and carbon-loss from organic matter of a Norway spruce forest soil[J]. Acta Ecologica Sinica, 1999, 19(5): 641 - 646. |
王彦辉, Rademacher P, Fölster H. 环境因子对挪威云杉林土壤有机质分解过程中重量和碳的气态损失影响及模型[J]. 生态学报, 1999, 19(5): 641 - 646. |
[1] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[2] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[3] | 张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45. |
[4] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[8] | 卓嘎,罗布,巴桑曲珍. 青藏高原那曲中部土壤温湿分布特征[J]. 冰川冻土, 2021, 43(6): 1704-1717. |
[9] | 王世金,魏彦强,牛春华,张云飞. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43(6): 1848-1860. |
[10] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[11] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[12] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[13] | 罗谨,王军邦,杨永胜,张光茹,祝景彬,贺慧丹,李英年. 1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J]. 冰川冻土, 2021, 43(5): 1542-1550. |
[14] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[15] | 刘艺阗, 姚济敏, 赵林, 肖瑶, 乔永平, 史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000