冰川冻土 ›› 2021, Vol. 43 ›› Issue (1): 92-106.doi: 10.7522/j.issn.1000-0240.2020.0092
收稿日期:
2019-10-22
修回日期:
2020-06-17
出版日期:
2021-02-28
发布日期:
2021-04-06
通讯作者:
李传金
E-mail:maxiangyu@lzb.ac.cn;lichuanjin@lzb.ac.cn
作者简介:
马翔宇, 硕士研究生, 主要从事冰冻圈环境记录与全球变化研究. E-mail: maxiangyu@lzb.ac.cn
基金资助:
Xiangyu MA1,2(), Chuanjin LI1(
)
Received:
2019-10-22
Revised:
2020-06-17
Online:
2021-02-28
Published:
2021-04-06
Contact:
Chuanjin LI
E-mail:maxiangyu@lzb.ac.cn;lichuanjin@lzb.ac.cn
摘要:
黑碳被认为是除温室气体外对气候变暖贡献最大的辐射强迫因子。三极(北极、南极和青藏高原)地区是全球雪冰分布最集中的区域,沉积至雪冰中的黑碳可反映人类活动的历史变化,并可能导致反照率降低而影响物质能量平衡。通过系统回顾三极地区雪冰黑碳的研究方法、空间分布、时间变化及其造成的辐射强迫,得到的研究结果表明: 由于处于不同的地理位置和环境条件,三极雪冰中黑碳的时空分布及其辐射强迫差异较大,其中青藏高原是浓度和辐射强迫影响最大的地区,也是对水资源和生态安全潜在影响最严重的区域。三极地区雪冰中保存着长时间序列的黑碳沉积记录,是研究自然变率、人类活动影响黑碳沉积历史(如北极与青藏高原冰芯中记录的工业革命以来黑碳沉积的快速上升)的良好介质,同样为模型预测未来变化提供了数据支持。三极地区是全球变化的指示器和放大器,在全球变暖不断加剧的背景下,黑碳必然会在未来的三极地区气候演变中扮演更为重要的角色。
中图分类号:
马翔宇, 李传金. 三极地区雪冰中黑碳研究进展[J]. 冰川冻土, 2021, 43(1): 92-106.
Xiangyu MA, Chuanjin LI. Research progress on black carbon in snow and ice in the three polar regions[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 92-106.
表1
雪冰中黑碳分析方法对比"
方法 | 检测限 | 不确定性 | 测量物 名称 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
光学分析法 | 1 ng·g-1 | 40% | eBC | 可直接测定滤膜上样品的吸光性 | 计算的黑碳值为估计值而非真实值; 由实验器材造成的误差较大 | [ |
热学分析法 | 1 μg·g-1 | / | EC | 直接获得黑碳的量; 结果较为精确 | 没有考虑样品中粉尘的影响; 有机碳氧化会使结果失真 | [ |
热-光分析法 | 1 ng·g-1 | / | EC | 精度高、重现性好; 分析速度较快; 可获得黑碳绝对含量; 数据处理简单 | 有机碳可能的热解影响; 滤膜样品不均一; 粉尘的影响; 进样量大; 需要去除碳酸盐; 繁杂前处理过程可能介入污染 | [ |
单颗粒烟尘光度计法 | 0.01 ng·g-1 | 5%~10% | rBC | 精度高、重现性好; 可获得黑碳粒度分布; 有机碳无干扰; 检测限低; 进样量小; 分析速度快; 可连续分析 | 黑碳存在雾化损失; 有限的检测范围; 校准物质不统一; 需要用到外部设备进行校正; 数据处理相对繁琐 | [ |
表2
北极地区雪冰中黑碳观测结果"
地区和站点 | 经纬度范围 | 站点数 | 采样日期 | 样品类型 | 分析方法 | 定年结果 | 分析结果/(ng·g-1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
世纪营地,格陵兰 | 77°09′ N,61°07′ W | 1 | 7—8月 | 表层雪 | 热学分析法 | - | 2.4 | [ |
格陵兰 | 约63°~81° N | 13 | 4—8月 | 表层雪 | 光学分析法 | - | 3 | [ |
北冰洋 | 约84°~90° N | 5 | 4月 | 表层雪 | 光学分析法 | 7 | [ | |
北极,加拿大 | 约66°~77° N | 25 | 4—5月 | 表层雪 | 光学分析法 | - | 8 | [ |
亚北极,加拿大 | 约63.5°~67.5° N | 27 | 3—4月 | 表层雪 | 光学分析法 | - | 10 | [ |
巴罗,阿拉斯加 | 约71.2°~71.3° N | 3 | 3—5月 | 表层雪 | 热光分析法 | - | 9 | [ |
巴罗,阿拉斯加 | 约71.2°~71.3° N | 5 | 4月 | 表层雪 | 光学分析法,热-光分析法 | - | 7.11 | [ |
斯巴瓦群岛,挪威 | 约79° N | 10 | 3—5月 | 表层雪 | 光学分析法 | - | 13 | [ |
特罗姆瑟,挪威 | 约69.7° N | 1 | 3—5月 | 表层雪 | 光学分析法 | - | 21 | [ |
阿比斯库,瑞典 | 约68.3° N | 1 | 3—4月 | 表层雪 | 光学分析法 | - | 31 | [ |
俄罗斯西部 | 约50°~110° E | 9 | 3—5月 | 表层雪 | 光学分析法 | - | 26 | [ |
西伯利亚东北部,俄罗斯 | 约125°~175° E | 14 | 3—5月 | 表层雪 | 光学分析法 | - | 17 | [ |
格陵兰GISP2 | 72.6° N,38.2° W | 1 | - | 冰芯 | 热学分析法 | 320—330 A.D. | 2.1 | [ |
1989—1990年 | 2.0 | |||||||
格陵兰Dye-3 | 65.2° N,43.8° W | 1 | - | 冰芯 | 热学分析法 | 0.1~3.4 ka BP | 1.5 | [ |
格陵兰D4 | 71.4° N,44.0° W | 1 | - | 冰芯 | SP2 | 1952—2002年 | 2.3(<1~10) | [ |
表3
青藏高原地区雪冰黑碳观测结果"
采样区域 | 冰川名称 | 经纬度 | 海拔/m | 采样日期 | 样品类型 | 分析方法 | 定年结果 | 分析结果/(ng·g-1) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
唐古拉山 | 冬克玛底 | 33.10° N,92.08° E | 5 600 | 2001年 | 雪坑 | 热-光分析法 | 约2001 | 79 | [ |
小冬克玛底 | 33.07° N,92.07° E | 5 606 | 2014—2015年 | 新雪 | 热-光分析法 | - | 41.77 | [ | |
老雪 | 246.84 | ||||||||
裸冰 | 3 335.36 | ||||||||
念青唐古拉山 | 拉农 | 30.42° N,90.57° E | 5 850 | 2005年7月 | 雪坑 | 热学分析法 | 2004—2005 | 67 | [ |
扎当 | 30.48° N,90.66° E | 5 802 | 2006年7月 | 雪坑 | 热学分析法 | 2005—2006 | 113 | [ | |
2012年 | 新雪 | 热-光分析法 | - | 52 | [ | ||||
老雪 | 258 | ||||||||
帕米尔高原 | 慕士塔格 | 38.28° N,75.02° E | 6 350 | 2001年 | 雪坑 | 热-光分析法 | 约2001 | 52 | [ |
2002年 | 冰芯 | SP2 | 1875—2000 | 0.62 | [ | ||||
木吉 | 39.19° N, 73.74° E | 5 185 | 2012年 | 新雪 | 热-光分析法 | - | 25 | [ | |
老雪 | 731 | ||||||||
天山 | 科其喀尔 | 41.81° N, 80.17° E | 4 300 | 2015年 | 老雪 | 热-光分析法 | - | 2 180 | [ |
喜马拉雅山 | 纳木那尼 | 30.45° N,81.27° E | 5 900 | 2004年 | 表层雪 | 热-光分析法 | - | 4 | [ |
抗物热 | 28.47° N,85.82° E | 6 000 | 2001年 | 表层雪 | 热-光分析法 | - | 22 | [ | |
枪勇 | 28.83° N,90.25° E | 5 400 | 2001年 | 表层雪 | 热-光分析法 | - | 43 | [ | |
东绒布 | 28.02° N,86.96° E | 6 500 | 2004年 | 雪坑 | 热学分析法 | 2003—2004 | 18 | [ | |
2002年 | 冰芯 | 热学方法 | 1951—2001 | 16 | [ | ||||
2002年 | 冰芯 | SP2 | 1860—2000 | - | [ | ||||
帕隆藏布4号 | 29.21° N,96.92° E | 5 500 | 2006年 | 冰芯 | 热-光分析法 | 1998—2005 | 4.7 | [ | |
麦拉 | 27.72° N,86.87° E | 6 376 | 2009年 | 老雪 | SP2 | - | 180 | [ | |
2010年 | 冰芯 | 2000—2010 | 3 | [ | |||||
祁连山 | 老虎沟12号 | 39.43° N,96.56° E | 5 045 | 2005年 | 雪坑 | 热学分析法 | 2004—2005 | 35 | [ |
2015—2016年 | 新雪 | 热-光分析法 | - | 40 | [ | ||||
老雪 | 1 785 | ||||||||
七一 | 39.23° N,97.06° E | 4 850 | 2005年 | 雪坑 | 热学分析法 | 2004—2005 | 22 | [ | |
昆仑山脉 | 煤矿 | 35.67° N,94.18° E | 5 200 | 2005年 | 雪坑 | 热学分析法 | 2004—2005 | 81 | [ |
各拉丹冬 | 果曲 | 33.58° N,91.18° E | 5 750 | 2005年 | 冰芯 | SP2 | 1843—1982 | - | [ |
藏东南 | 亚隆 | 29.30° N,96.77° E | 约4 075 | 2015年 | 老雪 | 热-光分析法 | - | 79.7 | [ |
东嘎 | 29.22° N,96.87° E | 约4 620 | 2015年 | 雪坑 | 热-光分析法 | - | 97.3 | [ | |
老雪/老冰 | 1 550 | ||||||||
仁隆巴 | 29.23° N,96.92° E | 约4 815 | 2015年 | 雪坑 | 热-光分析法 | - | 318 | [ | |
老雪/冰 | 3 648 | ||||||||
德木拉 | 29.35° N,96.02° E | 约5 094 | 2015年 | 雪坑 | 热-光分析法 | - | 125 | [ | |
新雪/冰 | 56.6 | ||||||||
白水沟1号 | 27.10° N,100.19° E | 4 806 | 2016年 | 新雪 | 热-光分析法 | - | 261.9 | [ | |
雪坑 | 776.2 | ||||||||
老雪 | 3 689 | ||||||||
裸冰 | 4 265 |
1 | Andreae M O, Crutzen P J. Atmospheric Aerosols: Biogeochemical Sources And Role In Atmospheric Chemistry[J]. Science,1997,276(5315): 1052-1058. |
2 | Jing Ming, Xiao Cunde, Qin Dahe,et al. Climate Forcing of Black Carbon in Snow and Ice[J]. Advances in Climate Change Research,2006,2(5): 238-241. |
明镜,效存德,秦大河,等. 雪冰黑碳的气候效应研究[J]. 气候变化研究进展,2006,2(5): 238-241. | |
3 | Zhang Yulan, Kang Shichang. Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings[J]. Science China,2017,62(35): 4151-4162. |
张玉兰,康世昌. 青藏高原及周边地区冰川中吸光性杂质及其影响研究进展[J]. 科学通报,2017,62(35): 4151-4162. | |
4 | Bond T C, Doherty S J, Fahey D W,et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research: Atmospheres,2013,118(11): 5380-5552. |
5 | Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change[J]. Geophysical Research Letters,2006,33(3): L03502 |
6 | Clarke A D. Integrating sandwich: a new method of measurement of the light absorption coefficient for atmospheric particles[J]. Applied Optics,1982,21(16): 3011-3020. |
7 | Qian Yun, Flanner M G, Leung L R,et al. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate[J]. Atmospheric Chemistry and Physics,2011,11(5): 1929-1948. |
8 | Skiles M K, Painter T H, Deems J S,et al. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates[J]. Water Resources Research,2012,48(7): W07522. |
9 | Stocker T, Qin Dahe, Plattner G,et al. IPCC,2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press,Cambridge,United Kingdom and New York,2013. |
10 | Kang Shichang, Zhang Qianggong, Qian Yun,et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review,2019,6(4): 796-809. |
11 | Liu Changming, Dang Suzhen, Wang Zhonggen,et al. Research Progress of Black Carbon in Snow and Ice[J]. South-to-North Water Diversion and Water Science & Technology,2012,10(2): 44-51. |
刘昌明,党素珍,王中根,等. 雪冰中黑碳的研究进展[J]. 南水北调与水利科技,2012,10(2): 44-51. | |
12 | Ming Jing, Cachier H, Xiao Cunde,et al. Black carbon record based on a shallow Himalayan ice core and its climatic implications[J]. Atmospheric Chemistry & Physics Discussions,2008,8(5): 14413-14432. |
13 | Chýlek P, Ramaswamy V, Cheng R J. Effect of graphitic carbon on the albedo of clouds[J]. Journal of the Atmospheric Sciences,1984,41(21): 3076-3084. |
14 | Flanner M G, Zender C S, Randerson J T,et al. Present-day climate forcing and response from black carbon in snow[J]. Journal of Geophysical Research,2007,112: D11 |
15 | Warren S G. Can black carbon in snow be detected by remote sensing?[J]. Journal of Geophysical Research Atmospheres,2013,118(2): 779-786. |
16 | Hansen J, Sato M, Ruedy R,et al. Efficacy of climate forcings[M]. Journal of Geophysical Research: Atmospheres,2005,110(D18): 2571-2592 |
17 | Qian Yun, Yasunari T J, Doherty S J,et al. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact[J]. Advances in Atmospheric Sciences,2014,32(1): 64-91. |
18 | Yao Tandong, Xue Yongkang, Chen Deliang,et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations,modeling,and analysis[J]. Bulletin of the American Meteorological Society,2019,100(3): 423-444. |
19 | Lin C I, Baker M, Charlson R J. Absorption coefficient of atmospheric aerosol: a method for measurement[J]. Applied Optics,1973,12(6): 1356-1363. |
20 | Horvath H. Experimental calibration for aerosol light absorption measurements using the integrating plate method—Summary of the data[J]. Journal of Aerosol Science,1997,28(7): 1149-1161. |
21 | Clarke A D, Noone K J, Heintzenberg J,et al. Aerosol light absorption measurement techniques: Analysis and intercomparisons[J]. Atmospheric Environment,1987,21(6): 1455-1465. |
22 | Fischer K. Measurements of absorption of visible radiation by aerosol particles (Visible radiation absorption by aerosol particles,noting gray absorption and imaginary portion of complex index of refraction)[J]. Beitraege Zur Physik der Atmosphaere,1970,43(4): 244-254. |
23 | Heintzenberg J. Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote Arctic locations[J]. Atmospheric Environment (1967),1982,16(10): 2461-2469. |
24 | Doherty S J, Warren S G, Grenfell T C,et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics,2010,10(23): 11647-11680. |
25 | Doherty S J, Grenfell T C, Forsström S,et al. Observed vertical redistribution of black carbon and other insoluble light‐absorbing particles in melting snow[J]. Journal of Geophysical Research: Atmospheres,2013,118(11): 5553-5569. |
26 | Grenfell T C, Doherty S J, Clarke A D,et al. Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters[J]. Applied Optics,2011,50(14): 2037-2048. |
27 | Malissa H, Puxbaum H, Pell E. Simultaneous relative-conductometric determination of carbon and sulfur in dusts[J]. Analytical and Bioanalytical Chemistry,1976,282: 109-113. |
28 | Dod T,L, Rosen H, Novakov T. Optico-thermal analysis of the Carbonaceous fraction of aerosol particles[J]. Univ of Calif,Berkeley,1978,Rep. LBL-8696 |
29 | Cachier H, Pertuisot M H. Particulate carbon in Arctic ice[J]. Analysis Magazine,1994,22: M34-M37. |
30 | Lavanchy V M H, Gäggeler H W, Nyeki S,et al. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch[J]. Atmospheric Environment,1999,33(17): 2759-2769. |
31 | Lavanchy V M H, Gäggeler H W, Schotterer U,et al. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti,Switzerland)[J]. Journal of Aerosol Science,1999,104(D17): 21227-21236. |
32 | Schwarz J P, Gao R S, Fahey D W,et al. Single-particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere[J]. Journal of Geophysical Research: Atmospheres,2006,111(2006): D16207. |
33 | Ming Jing, Xiao Cunde, Sun Junying. The general statement on the measuring methods for black carbon in snow andice[J]. Progress in Geophysics,2005,20(3): 859-863. |
明镜,效存德,孙俊英. 雪冰中黑碳的测试分析方法综述[J]. 地球物理学进展,2005,20(3): 859-863. | |
34 | Sterle K M, Mcconnell J R, Dozier J,et al. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow[J]. The Cryosphere,2013,7(1): 365-374. |
35 | Bisiaux M M, Edwards R, Mcconnell J R,et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records,1850—2000 AD[J]. Atmospheric Chemistry and Physics,2012,12(9): 4107-4115. |
36 | Bisiaux M M, Edwards R, Mcconnell J R,et al. Variability of black carbon deposition to the East Antarctic Plateau,1800—2000 AD[J]. Atmospheric Chemistry and Physics,2012,12(8): 3799-3808. |
37 | Kaspari S D, Schwikowski M, Gysel M,et al. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860—2000 AD[J]. Geophysical Research Letters,2011,38(4): L04703. |
38 | Mcconnell J R, Edwards R, Kok G L,et al. 20th-century industrial black carbon emissions altered Arctic climate forcing[J]. Science,2007,317(5843): 1381-1384. |
39 | Cross E S, Onasch T B, Ahern A,et al. Soot particle studies—Instrument Inter-Comparison—Project overview[J]. Aerosol Science & Technology,2010,44(8): 592-611. |
40 | Laborde M, Mertes P, Zieger P,et al. Sensitivity of the Single Particle Soot Photometer to different black carbon types[J]. Atmospheric Measurement Techniques,2012,5(1): 1031-1043. |
41 | Moteki N, Kondo Y. Effects of mixing state on black carbon measurements by laser-induced incandescence[J]. Aerosol Science & Technology,2007,41(4): 398-417. |
42 | Slowik J G, Cross E S, Han J-H,et al. An inter-comparison of instruments measuring black carbon content of soot particles[J]. Aerosol Science & Technology,2007,41(3): 295-314. |
43 | Li Chaoliu, Yan Fangping, Kang Shichang,et al. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition[J]. Atmospheric Chemistry and Physics,2017,17: 11899-11912. |
44 | Countess R. Interlaboratory analyses of carbonaceous aerosol samples[J]. Aerosol Science & Technology,1990,12(1): 114-121. |
45 | Schmid H, Laskus L, Abraham H J,et al. Results of the “carbon conference” international aerosol carbon round robin test stage I[J]. Atmospheric Environment,2001,35(12): 2111-2121. |
46 | Petzold A, Ogren J A, Fiebig M,et al. Recommendations for reporting “black carbon” measurements[J]. Atmospheric Chemistry and Physics,2013,13(16): 8365-8379. |
47 | Schwarz J P, Doherty S J, Li F,et al. Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow[J]. Atmospheric Measurement Techniques,2012,5(11): 2581-2592. |
48 | Lim S, Faïn X, Zanatta M,et al. Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement[J]. Atmospheric Measurement Techniques,2014,7(10): 3307-3324. |
49 | Yasunari T J, Koster R D, Lau K M,et al. Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model[J]. Journal of Geophysical Research,2011,116: D02210. |
50 | Yasunari T J, Lau K M, Mahanama S,et al. The goddard snow impurity module (GOSWIM) for the NASA GEOS-5 Earth System Model: preliminary comparisons with observations in Sapporo,Japan[J]. Sola,2014,10(1): 50-56. |
51 | Dou Tingfeng, Xiao Cunde, Shindell D T,et al. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model[J]. Atmospheric Chemistry and Physics,2012,12(17): 7995-8007. |
52 | Ji Zhenming, Kang Shichang, Cong Zhiyuan,et al. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution,transportation,deposition,and climatic effects[J]. Climate Dynamics,2015,45(9): 2831-2846. |
53 | Ji Zhenming. Modeling black carbon and its potential radiative effects over the Tibetan Plateau[J]. Advances in Climate Change Research,2016,7(3): 139-144. |
54 | Yang Junhua, Kang Shichang, Ji Zhenming. Sensitivity analysis of chemical mechanisms in the WRF-chem model in reconstructing aerosol concentrations and optical properties in the Tibetan Plateau[J]. Aerosol and Air Quality Research,2018,18: 505-521. |
55 | Yang Junhua, Kang Shichang, Ji Zhenming,et al. Modeling the origin of anthropogenic black carbon and its climatic effect over the Tibetan Plateau and surrounding regions[J]. Journal of Geophysical Research: Atmospheres,2018,123(2): 671-692. |
56 | Yang Junhua, Kang Shichang, Ji Zhenming. Critical contribution of south Asian residential emissions to atmospheric black carbon over the Tibetan Plateau[J]. Science of the Total Environment,2020,709: 135923. |
57 | Zhang Yulan, Kang Shichang, Zhang Qianggong,et al. Chemical records in snowpits from high altitude glaciers in the Tibetan Plateau and its surroundings[J]. PloS One,2016,11(5): e0155232. |
58 | Zhang Yulan, Kang Shichang, Li Chaoliu,et al. Characteristics of black carbon in snow from Laohugou No.12 Glacier on the northern Tibetan Plateau[J]. Science of the Total Environment,2017,607: 1237-1249. |
59 | Li Xiaofei, Kang Shichang, Zhang Guoshuai,et al. Light-absorbing impurities in a southern Tibetan Plateau glacier: variations and potential impact on snow albedo and radiative forcing[J]. Atmospheric Research,2018,200: 77-87. |
60 | Li Chaoliu, Bosch C, Kang Shichang,et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications,2016,7(1): 1-7. |
61 | Qian Yun, Gustafson Jr. W I, Leung L R,et al. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations[J]. Journal of Geophysical Research: Atmospheres,2009,114: D03108 |
62 | Ming Jing, Qin Dahe,Xiao,Cunde. Black carbon in snow and ice: a review[J]. Journal of Glaciology and Geocryology,2005,27(4): 539-544. |
明镜,秦大河,效存德. 雪冰中的黑碳记录研究的历史回顾[J]. 冰川冻土,2005,27(4): 539-544. | |
63 | Rosen H, Novakov T, Bodhaine B. Soot in the Arctic[J]. Atmospheric Environment,1981,15(8): 1371-1374. |
64 | Warren S G. Optical properties of snow[J]. Reviews of Geophysics,1982,20(1): 67-89. |
65 | Chýlek P, Ramaswamy V, Srivastava V. Albedo of soot-contaminated snow[J]. Journal of Geophysical Research: Oceans,1983,88(C15): 10837-10843. |
66 | Clarke A D, Noone K J. Soot in the Arctic snowpack: a cause for perturbations in radiative transfer[J]. Atmospheric Environment,1985,19(12): 2045-2053. |
67 | Zhang Yulan, Kang Shichang, Sprenger M,et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau[J]. The Cryosphere,2018,12(2): 413-431. |
68 | Chýlek P, Srivastava V, Cahenzli L,et al. Aerosol and graphitic carbon content of snow[J]. Journal of Geophysical Research: Atmospheres,1987,92(D8): 9801-9809. |
69 | Grenfell T C, Warren S G, Radionov V F,et al. Expeditions to the Russian Arctic to Survey Black Carbon in Snow[J]. Eos Transactions American Geophysical Union,2009,90(43): 386-387. |
70 | Koch D, Menon S, Del Genio A,et al. Distinguishing aerosol impacts on climate over the past century[J]. Journal of Climate,2009,22(10): 2659-2677. |
71 | Dou Tingfeng, Xiao Cunde. An overview of black carbon deposition and its radiative forcing over the Arctic[J]. Advances in Climate Change Research,2016,7(3): 115-122. |
72 | Forsström S, Isaksson E, Skeie R B,et al. Elemental carbon measurements in European Arctic snow packs[J]. Journal of Geophysical Research: Atmospheres,2013,118(24): 13614-13627. |
73 | Dou Tingfeng, Xiao Cunde, Du Zhiheng,et al. Sources,evolution and impacts of EC and OC in snow on sea ice: a measurement study in Barrow,Alaska[J]. Science Bulletin,2017,62(22): 1547-1554. |
74 | Chýlek P, Johnson B, Damiano P,et al. Biomass burning record and black carbon in the GISP2 ice core[J]. Geophysical Research Letters,1995,22(2): 89-92. |
75 | Chylek P, Johnson B, Wu H. Black carbon concentration in a Greenland Dye-3 ice core[J]. Geophysical Research Letters,1992,19(19): 1951-1953. |
76 | Warren S G, Clarke A D. Soot in the atmospheric and snow surface of Antarctica[J]. Journal of Geophysical Research: Atmospheres,1990,95(D2): 1811-1816. |
77 | Grenfell T C, Warren S G, Mullen P C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet,visible,and near‐infrared wavelengths[J]. Journal of Geophysical Research: Atmospheres,1994,99(D9): 18669-18684. |
78 | Casey K A, Kaspari S D, Skiles S M,et al. The spectral and chemical measurement of pollutants on snow near South Pole,Antarctica[J]. Journal of Geophysical Research: Atmospheres,2017,122(12): 6592-6610. |
79 | Khan A L, Mcmeeking G R, Schwarz J P,et al. Near‐Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys,Antarctica,and Potential Impacts of Foehn Winds[J]. Journal of Geophysical Research: Atmospheres,2018,123(5): 2877-2887. |
80 | Marquetto L, Kaspari S, Cardia Simões J. Refractory Black carbon (rBC) variability in a 47-year West Antarctic Snow and Firn core[J]. The Cryosphere Discuss,2019,2019: 1-23. |
81 | Kinase T, Adachi K, Oshima N,et al. Concentrations and size distributions of black carbon in the surface snow of eastern Antarctica in 2011[J]. Journal of Geophysical Research: Atmospheres,2020,125(1): e2019JD030737. |
82 | Chýlek P, Johnson B, Wu H. Black carbon concentration in Byrd Station ice core: from 13 000 to 700 years before present[J]. Annales Geophysicae,1992,10(8): 625-629. |
83 | Arienzo M M, Mcconnell J R, Murphy L N,et al. Holocene black carbon in Antarctica paralleled Southern Hemisphere climate[J]. Journal of Geophysical Research: Atmospheres,2017,122(13): 6713-6728. |
84 | Yao Tandong, Thompson L G, Yang Wei,et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change,2012,2(9): 663-667. |
85 | Kang Shichang, Xu Yanwei, You Qinglong, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters,2010,5(1): 015101. |
86 | Kang Shichang, Wang Feiyue, Morgenstern U,et al. Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records[J]. The Cryosphere,2015,9(3): 1213-1222. |
87 | Xu Baiqing, Cao Junji, Hansen J,et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(52): 22114-22118. |
88 | Wang Mo, Xu Baiqing, Cao Jinbin,et al. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing[J]. Atmospheric Chemistry and Physics,2015,15(3): 1191-1204. |
89 | Gertler C G, Puppala S P, Panday A,et al. Black carbon and the Himalayan cryosphere: a review[J]. Atmospheric Environment,2016,125: 404-417. |
90 | Ramanathan V, Chung C E, Kim D,et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(15): 5326-5333. |
91 | Schmale J, Flanner M G, Kang S,et al. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon[J]. Scientific Reports,2017,7(1): 40501-40501. |
92 | Xu Baiqing, Yao Tandong, Liu Xianqin,et al. Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau[J]. Annals of Glaciology,2006,43(1): 257-262. |
93 | Ming Jing, Xiao Cunde, Du Zhiheng,et al. Black carbon in snow/ice of west china and its radiative forcing[J]. Advances in Climate Change Research,2009,5(6): 328-335. |
明镜,效存德,杜振彩,等. 中国西部雪冰中黑碳及其辐射强迫[J]. 气候变化研究进展,2009,5(6): 328-335. | |
94 | Ming Jing, Xiao Cunde, Cachier H,et al. Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research,2009,92(1): 114-123. |
95 | Zhang Xiaoye. Source distribution emission transport deposition of Asian dust and loess accumulation[J]. Quaternary Sciences,2001,21(1): 29-40. |
张小曳. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究,2001,21(1): 29-40. | |
96 | Yu Guangming, Xu Jianzhong, Kang Shichang,et al. Lead isotopic composition of insoluble particles from widespread mountain glaciers in western China: natural vs. anthropogenic sources[J]. Atmospheric Environment,2013,75: 224-32. |
97 | Fang Xiaomin, Han Yongxiang, Ma Jinghui,et al. Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa[J]. Science Bulletin,2004,49(9): 953-960. |
98 | Xujianzhong, Sun Junying, Ren Jiawen. Advances in the study of insoluble microparticle in ice-snow on the Qinghai-Xizang Plateau[J]. Advances in Earth Science,2006,21(3): 299-304 |
99 | Gustafsson Ö, Kruså M, Zencak Z,et al. Brown clouds over South Asia: biomass or fossil fuel combustion?[J]. Science,2009,323(5913): 495-498. |
100 | Xu Baiqing, Wang Mo, Joswiak D R,et al. Deposition of anthropogenic aerosols in a southeastern Tibetan glacier[J]. Journal of Geophysical Research Atmospheres,2009,114: D17209 |
101 | Li Xiaofei, Kang Shichang, He Xiaobo,et al. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau[J]. Science of the Total Environment,2017,587-588: 482-490. |
102 | Qu Bin, Ming Jing, Kang Shichang,et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities[J]. Atmospheric Chemistry and Physics,2014,14(20): 11117-11128. |
103 | Wang Mo, Xu Baiqing, Kaspari S D,et al. Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning[J]. Atmospheric Environment,2015,115: 79-88. |
104 | Yang Song, Xu Baiqing, Cao Junji,et al. Climate effect of black carbon aerosol in a Tibetan Plateau glacier[J]. Atmospheric Environment,2015,111: 71-78. |
105 | Zhang Yulan, Kang Shichang, Xu Min,et al. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction[J]. Sciences in Cold and Arid Regions,2017,9(2): 97-111. |
106 | Kaspari S, Painter T H, Gysel M,et al. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu,Nepal and estimated radiative forcings[J]. Atmospheric Chemistry and Physics,2014,14(15): 8089-8103. |
107 | Ginot P, Dumont M, Lim S,et al. A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers[J]. Cryosphere,2014,8(8): 1479-1496. |
108 | Matthew J, Susan K, Kang Shichang,et al. Tibetan Plateau Geladaindong black carbon ice core record (1843—1982): Recent increases due to higher emissions and lower snow accumulation[J]. Advances in Climate Change Research,2016,7(3): 132-138. |
109 | Zhang Yulan, Kang Shichang, Cong Zhiyuan,et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres,2017,122(13): 6915-6933. |
110 | Niu Hewen, Kang Shichang, Wang Hailong,et al. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau[J]. Environmental Pollution,2020,257: 113541. |
111 | Zennaro P, Kehrwald N, Mcconnell J R,et al. Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core[J]. Climate of the Past,2014,10(5): 1905-1924. |
112 | Legrand M, De Angelis M, Staffelbach T,et al. Large perturbations of ammonium and organic acids content in the summit-Greenland Ice Core. Fingerprint from forest fires?[J]. Geophysical Research Letters,1992,19(5): 473-475. |
113 | Osmont D, Wendl I A, Schmidely L,et al. An 800-year high-resolution black carbon ice core record from Lomonosovfonna,Svalbard[J]. Atmospheric Chemistry and Physics,2018,18(17): 12777-12795. |
114 | Zdanowicz C M, Proemse B C, Edwards R,et al. Historical black carbon deposition in the Canadian High Arctic: a >250-year long ice-core record from Devon Island[J]. Atmospheric Chemistry and Physics,2018,18(16): 12345-12361. |
115 | Ming Jing, Xiao Cunde, Du Zhiheng,et al. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance[J]. Advances in Water Resources,2013,55: 80-87. |
116 | Kaspari S D, Schwikowski M, Gysel M,et al. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860—2000 AD[J]. Geophysical Research Letters,2011,38(4): L04703. |
117 | Zhang Yulan, Kang Shichang, Xu M,et al. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction[J]. Sciences in Cold and Arid Regions,2018,9(2): 97-111. |
118 | Jiao C, Flanner M G, Balkanski Y,et al. An AeroCom assessment of black carbon in Arctic snow and sea ice[J]. Atmospheric Chemistry and Physics,2014,14(5): 2399-2417. |
119 | Skiles S M, Flanner M, Cook J M,et al. Radiative forcing by light-absorbing particles in snow[J]. Nature Climate Change,2018,8(11): 964-971. |
120 | He Cenlin, Li Qinbin, Liou K N,et al. Black carbon radiative forcing over the Tibetan Plateau[J]. Geophysical Research Letters,2015,41(22): 7806-7813. |
121 | Ji Zhenming, Kang Shichang, Zhang Qianggong,et al. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model[J]. Atmospheric Research,2016,179: 484-496. |
122 | Niu Hewen, Kang Shichang, Shi Xiaofei,et al. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates[J]. Science of the Total Environment,2017,581: 848-856. |
123 | Niu Hewen, Kang Shichang, Zhang Yulan,et al. Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong,southeastern Tibetan Plateau[J]. Atmospheric Research,2017,197: 474-484. |
124 | Li Yang, Chen Jizu, Kang Shichang,et al. Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains,northeastern Tibetan Plateau[J]. The Cryosphere Discussions,2016,32: 1-14. |
[1] | 赵晔蕾, 许诗枫, 许嘉慧, 黄艳, 彭小宝, 王淑杰, 刘红星, 余柏蒗, 吴健平. 南极Getz F冰架表面冰流速及结构特征时空变化分析[J]. 冰川冻土, 2022, 44(1): 106-116. |
[2] | 周雪飞, 徐嘉, 张绪冰. 基于Sentinel-1卫星数据的北极西北航道通航适宜性分析[J]. 冰川冻土, 2022, 44(1): 117-132. |
[3] | 骆建伟, 柯长青, 喻薛凝. 2000—2020年兴都库什东部冰川区物质平衡变化及其影响因素[J]. 冰川冻土, 2022, 44(1): 159-170. |
[4] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[5] | 洪嘉琳, 焦凤琪, 应咏翰, 李金奇, 王义超, 邵也, 范晓鹏. 循环载荷对压实雪冰抗压强度的影响研究[J]. 冰川冻土, 2022, 44(1): 251-261. |
[6] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[7] | 张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45. |
[8] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[9] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[10] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[11] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[12] | 卓嘎,罗布,巴桑曲珍. 青藏高原那曲中部土壤温湿分布特征[J]. 冰川冻土, 2021, 43(6): 1704-1717. |
[13] | 杨婧睿,蒋宗立,刘时银,王欣,张勇,张震,魏俊锋. 东喀喇昆仑山昆常冰川近期跃动特征[J]. 冰川冻土, 2021, 43(6): 1732-1745. |
[14] | 武小波,李全莲,贺建桥. 黄河源区阿尼玛卿山耶和龙冰川积雪中不溶微粒组成特征及环境意义[J]. 冰川冻土, 2021, 43(6): 1746-1754. |
[15] | 王世金,魏彦强,牛春华,张云飞. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43(6): 1848-1860. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000