1 |
Gao Zhengmin, Zhang Fuzhu. Research progress and perspectives on nitrogen cycle and pollution in the environment[J]. Environmental Science Series, 1982, 4(4): 7-12.
|
|
高拯民, 张福珠. 环境中氮循环与氮污染研究现状与展望[J]. 环境科学丛刊, 1982, 4(4): 7-12.
|
2 |
Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth’s nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.
|
3 |
Yu Guirui, Jia Yanlong, He Nianpeng, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429.
|
4 |
Zhou Nianqing, Zhao Shan, Shen Xinping. Research progress on nitrogen cycle in succession zone of natural wetland[J]. Chinese Science Bulletin, 2014, 59(18): 1688-1699.
|
|
周念清, 赵姗, 沈新平. 天然湿地演替带氮循环研究进展[J]. 科学通报, 2014, 59(18): 1688-1699.
|
5 |
IPCC. Climate Change 2014: Mitigation of climate change. contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change[R]//Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014.
|
6 |
Jia Yanlong, Yu Guirui, Gao Yanni, et al. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements[J]. Scientific Reports, 2016, 6: 19810.
|
7 |
Brighenti S, Tolotti M, Bruno M C, et al. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review[J]. Science of the Total Environment, 2019, 675: 542-559.
|
8 |
Milner A M, Khamis K, Battin T J, et al. Glacier shrinkage driving global changes in downstream systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9770-9778.
|
9 |
Wadham J L, Hawkings J, Telling, et al. Sources, cycling and export of nitrogen on the Greenland Ice Sheet[J]. Biogeosciences, 2016, 13(22): 6339-6352.
|
10 |
Du Enzai, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221-226.
|
11 |
Fibiger D L, Hastings M G. First measurements of the nitrogen isotopic composition of NOx from biomass burning[J]. Environmental Science and Technology, 2016, 50: 11569-11574.
|
12 |
Hastings M G, Casciotti K L, Elliott E M. Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts[J]. Elements, 2013, 9: 339-344.
|
13 |
Miller D J, Chai J, Guo F, et al. Isotopic composition of in situ soil NOx emissions in manure‐fertilized cropland[J]. Geophysical Research Letters, 2018, 45: 12058-12066.
|
14 |
Yu Zhongjie, Elliott E M. Novel method for nitrogen isotopic analysis of soil-emitted nitric oxide[J]. Environmental Science and Technology, 2017, 51: 6268-6278.
|
15 |
Li Zhenjie, Hastings M G, Walters W W, et al. Isotopic evidence that recent agriculture overprints climate variability in nitrogen deposition to the Tibetan Plateau[J]. Environment International, 2020, 138: 12.
|
16 |
Shi Guitao, Qin Rui, Ma Hongmei, et al. A review of the stable isotopic composition of nitrate in Antarctic snow and ice[J]. Chinese Journal of Polar Research, 2019, 31(2): 117-127.
|
|
史贵涛, 秦瑞, 马红梅, 等. 南极雪冰中硝酸根稳定同位素研究进展[J]. 极地研究, 2019, 31(2): 117-127.
|
17 |
Hock R, Rasul G. Chapter 2: High Mountain Ares. In IPCC 2019: IPCC special report on the ocean and cryosphere in a changing climate[R]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2019
|
18 |
Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140.
|
19 |
Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
20 |
Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568: 382-386.
|
21 |
Chen Mengke, Wang Chuanfei, Wang Xiaoping, et al. Release of Perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(13): 7442-7456.
|
22 |
Colombo N, Bocchiola D, Martin M, et al. High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW Italian Alps)[J]. Aquatic Sciences, 2019, 81(4): 13.
|
23 |
Hodson A, Roberts T J, Engvall A C, et al. Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic[J]. Biogeochemistry, 2010, 98(1/2/3): 171-184.
|
24 |
Zhang Qianggong, Huang Jie, Wang Feiyue, et al. Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science and Technology, 2012, 46(10): 5404-5413.
|
25 |
Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790): 364-369.
|
26 |
Tong Yindong, Chen Long, Chi Jie, et al. Riverine nitrogen loss in the Tibetan Plateau and potential impacts of climate change[J]. Science of the Total Environment, 2016, 553: 276-284.
|
27 |
Mayewski P A, Lyons W B, Spencer M J, et al. An ice core record of atmospheric response to anthropogenic sulphate and nitrate[J]. Nature, 1990, 346: 554-556.
|
28 |
Thompson L G, Yao Tandong, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320): 1821-1825.
|
29 |
Wang Ninglian, Thompson L G, Dai C J. Characteristics of Maunder minimum solar activity recorded in Guliya ice core in the Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(16): 1697-1704.
|
|
王宁练, Thompson Lonnie G, Dai Cole J. 青藏高原古里雅冰芯记录所揭示的Maunder极小期太阳活动特征[J]. 科学通报, 2000, 45(16): 1697-1704.
|
30 |
Wang Ninglian, Yao Tandong, Thompson L G. NO3 - concentrations and solar activity recorded from the Guliya ice core in the Tibetan Plateau[J]. Chinese Science Bulletin, 1998, 43(3): 309-312.
|
|
王宁练, 姚檀栋, Thompson L G. 青藏高原古里雅冰芯中NO3 -浓度与太阳活动[J]. 科学通报, 1998, 43(3): 309-312.
|
31 |
Shi Guitao, Buffen A M, Ma Hongmei, et al. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet[J]. Geochimoca Cosmochimica Acta, 2018, 231: 1-14.
|
32 |
Wolff E W. Nitrate in polar ice[M]//Delmas R J. Ice core studies of global biogeochemical cycles. New York: Springer, 1995: 195-224.
|
33 |
Zhao Zhongping, Li Zhongqin, Ross Edwards, et al. Atmosphere-to-snow-to-firn transfer of NO3 - on Urumqi Glacier No.1, eastern Tien Shan, China[J]. Annals of Glaciology, 2006, 43: 239-244.
|
34 |
Kaufmann P, Fundel F, Fischer H, et al. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean[J]. Quaternary Science Reviews, 2010, 29: 313-323.
|
35 |
Meeker L D, Mayewski P A, Twickler M S, et al. A 110 000-year history of change in continental biogenic emissions and related atmospheric circulation inferred from the Greenland Ice Sheet Project Ice Core[J]. Journal of Geophysical Research, 1997, 102(12): 26489-26504.
|
36 |
Pasteris D R, McConnell J R, Das S B, et al. Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium[J]. Journal of Geophysical Research, 2014, 119: 9168-9182.
|
37 |
Savarino J, Legrand M. High northern latitude forest fires and vegetation emissions over the last millennium inferred from the chemistry of a central Greenland ice core[J]. Journal of Geophysical Research, 1998, 103(7): 8267-8280.
|
38 |
Schwikowski M, Brütsch S, Gäggeler H W, et al.. A high-resolution air chemistry record from an alpine ice core: Fiescherhorn glacier, Swiss Alps[J]. Journal of Geophysical Research, 1999, 104(11): 13709-13719.
|
39 |
Döscher A, Gäggeler H W, Schotterer U. A historical record of ammonium concentrations from a glacier in the Alps[J]. Geophysical Research Letters, 1996, 23(20): 2741-2744
|
40 |
Kang Shichang, Zhang Qianggong, Qian Yun, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review, 2019, 6(4): 796-809.
|
41 |
Kang Shichang, Mayewski PA, Qin Dahe, et al. Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core[J]. Journal of Geophysical Research-Atmospheres, 2002, 107(20): 10.
|
42 |
Zhao Huabiao, Xu Baiqing, Yao Tandong, et al. Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia[J]. Journal of Geophysical Research-Atmospheres, 2011, 116: 10.
|
43 |
Zhang Yulan, Kang Shichang, Zhang Qianggong, et al. A 500 year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau[J]. Atmospheric Research, 2015, 166: 1-9.
|
44 |
Olivier S, Blaser C, Brutsch S, et al. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai[J]. Journal of Geophysical Research-Atmospheres, 2006, 111(5): 13.
|
45 |
Zou Xiang, Hou Shugui, Zhang Wangbin, et al. An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record[J]. Environmental Pollution, 2020, 262: 114314.
|
46 |
Gao Tanguang, Kang Shichang, Zhang Yulan, et al. Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia[J]. The Science of the total environment, 2020, 725: 138346.
|
47 |
Zhang Yulan, Kang Shichang, Zhang Qianggong, et al. Chemical records in snow pits from high altitude glaciers in the Tibetan Plateau and its surroundings [J]. Plos One, 2016, 11(5): 0155232.
|
48 |
Wang Shengjie, Zhang Mingjun, Wang Feiteng, et al. Observed nitrogen-containing ion transportation at the firn-ice interface of the Urumqi Glacier No.1 in the Tianshan Mountains[J]. Acta Geoscientica Sinica, 2011, 32(6): 699-706.
|
|
王圣杰, 张明军, 王飞腾, 等. 乌鲁木齐河源1号冰川雪-冰界面含氮离子迁移研究[J]. 地球学报, 2011, 32(6): 699-706.
|
49 |
Dong Zhiwen, Ren Jiawen, Qin Dahe, et al. Chemistry characteristics and environmental significance of snow deposited on the Laohugou glacier No.12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 327-335.
|
|
董志文, 任贾文, 秦大河, 等. 祁连山老虎沟12号冰川积雪化学特征及环境意义[J]. 冰川冻土, 2013, 35(2): 327-335.
|
50 |
Wu Xiaobo, Li Quanlian, Wang Ninglian, et al. Regional characteristics of ion concentration in glacier snow pits over the Tibetan Plateau and source analysis [J]. Environmental Science, 2011, 32(4): 971-975.
|
|
武小波, 李全莲, 王宁练, 等. 青藏高原冰川雪坑中离子浓度的区域特征及来源分析[J]. 环境科学, 2011, 32(4): 971-975.
|
51 |
Hu Zhaofu, Kang Shichang, He Xiaobo, et al. Carbonaceous matter in glacier at the headwaters of the Yangtze river: concentration, sources and fractionation during the melting processes[J]. Journal of Environmental Science, 2020, 87(1): 389-397.
|
52 |
Kang Shichang, Mayewski P A, Qin Dahe, et al. Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas[J]. Atmospheric Environment, 2004, 38: 2819-2829.
|
53 |
Kang Shichang, Qin Dahe, Yao Tandong, et al. A study on precipitation chemistry in the late summer in the northern slope of Mt. Xixiabangma[J]. Acta Scientiae Circumstantiae, 2000, 20(5), 574-581.
|
|
康世昌, 秦大河, 姚檀栋, 等. 希夏邦马峰被迫地区夏末降水化学特征探讨[J]. 环境科学学报, 2000, 20(5), 574-581.
|
54 |
Li Zongxing, He Yuanqing, Pang Hongxi, et al. Sources of major anions and cations of snow packs in the typical monsoonal temperate glacial region of China[J]. Acta Geographica Sinica, 2007, 62(9): 992-1001.
|
|
李宗省, 何元庆, 庞洪喜, 等. 我国典型季风海洋性冰川区雪坑中主要阴、阳离子的来源[J]. 地理学报, 2007, 62(9): 992-1001.
|
55 |
Niu Hewen, He Yuanqing, Kang Shichang, et al. Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau[J]. Journal of Earth System Science, 2016, 125(2): 403-416.
|
56 |
Zhang Yulan, Kang Shichang, Li Gang, et al. Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: insights into concentrations and possible sources[J]. Plos One, 2018, 13(10): 0205414.
|
57 |
Hou Shugui, Qin Dahe, Ren Jiawen, et al. Post-depositional modification of NO3 - in snow layers at East Antarctica and at the Headwater of Urumqi River[J]. Chinese Journal of Polar Research, 1999, 11(2): 81-87.
|
|
侯书贵, 秦大河, 任贾文, 等. 东南极内陆地区和乌鲁木齐河源1号冰川表层雪内NO3 -沉积后过程差异[J]. 极地研究, 1999, 11(2): 81-87.
|
58 |
Frey M M, Savarino J, Morin S, et al. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling[J]. Atmospheric Chemistry and Physics, 2009, 9(22): 8681-8696.
|
59 |
Shi Guitao, Hastings M G, Yu J, et al. Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica[J]. The Cryosphere, 2018, 12: 1177-1194.
|
60 |
Chang Yunhua, Liu Xuejun, Li Kaihui, et al. Research progress in atmospheric nitrogen deposition[J]. Arid Zone Research, 2012, 29(6): 972-979.
|
|
常运华, 刘学军, 李凯辉, 等. 大气氮沉降研究进展[J]. 干旱区研究, 2012, 29(6): 972-979.
|
61 |
Wang Shengjie, Zhang Mingjun, Wang Feiteng, et al. A review of the concentration records of nitrate in snow and ice[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1162-1169.
|
|
王圣杰, 张明军, 王飞腾, 等. 雪冰中NO3 -浓度记录的研究进展[J]. 冰川冻土, 2010, 32(6): 1162-1169.
|
62 |
Neff J C, Holland E A, Dentener F J, et al. The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle?[J] Biogeochemistry, 2002, 57(1): 99-136.
|
63 |
Warner K A, Saros J E, Simon K S. Nitrogen subsidies in glacial meltwater: Implications for high elevation aquatic chains[J]. Water Resources Research, 2017, 53(11): 9791-9806.
|
64 |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
|
65 |
Guo Wanqin, Liu Shiyin, Xu Junli, et al. The second Chinese glacier inventory: data, methods and results[J]. Journal of Glaciology, 2015, 61(226): 357-372.
|
66 |
Darcy J L, Schmidt S K, Knelman J E, et al. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat [J]. Science Advances, 2018, 4: 0942.
|