1 |
Schroeder W H, Munthe J. Atmospheric mercury: an overview[J]. Atmospheric Environment, 1998, 32(5): 809-822.
|
2 |
Selin N E. Global biogeochemical cycling of mercury: a review[J]. Annual Review of Environment and Resources, 2009, 34: 43-63.
|
3 |
Travnikov O, Angot H, Artaxo P, et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation[J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5271-5295.
|
4 |
UNEP. Global mercury assessment 2013: sources, emissions, releases and environmental transport[M]. Geneva, Switzerland, 2013.
|
5 |
Zhang Q, Huang J, Wang F, et al. Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science & Technology, 2012, 46(10): 5404-5413.
|
6 |
Zheng J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic[J]. Science of the Total Environment, 2015, 509: 133-144.
|
7 |
Agnan Y, Douglas T A, Helmig D, et al. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges[J]. The Cryosphere, 2018, 12: 1939-1956.
|
8 |
Stern G A, Macdonald R W, Outridge P M, et al. How does climate change influence arctic mercury?[J]. Science of the Total Environment, 2012, 414: 22-42.
|
9 |
Loseto L L, Lean D R S, Siciliano S D. Snowmelt sources of methylmercury to High Arctic ecosystems[J]. Environmental Science & Technology, 2004, 38(11): 3004-3010.
|
10 |
Dommergue A, Larose C, Faïn X, et al. Deposition of mercury species in the Ny-Ålesund area (79° N) and their transfer during snowmelt[J]. Environmental Science & Technology, 2010, 44(3): 901-907.
|
11 |
Chételat J, Amyot M, Arp P, et al. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate[J]. Science of the Total Environment, 2015, 509: 41-66.
|
12 |
David L. VanderZwaag. Minamata Convention on Mercury 2013 and Arctic environmental protection: hope and challenge of mercury pollution control[J]. China Oceans Law Review, 2015, 2: 208-243.
|
|
VanderZwaag D L. 2013年《水俣公约》与北极环境保护: 汞污染防治的希望与挑战[J]. 中国海洋法学评论, 2015, 2: 208-243.
|
13 |
Bond A L, Hobson K A, Branfireun B A. Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1805): 20150032.
|
14 |
Lindberg S E, Brooks S, Lin C J, et al. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise[J]. Environmental Science & Technology, 2002, 36(6): 1245-1256.
|
15 |
Zhu Wei, Feng Xinbin, Qiu Guangle, et al. Atmospheric mercury depletion events (AMDEs) in the polar regions: a review[J]. Chinese Journal of Ecology, 2011, 30(5): 857-864.
|
|
朱伟, 冯新斌, 仇广乐, 等. 极地大气汞亏损研究进展[J]. 生态学杂志, 2011, 30(5): 857-864.
|
16 |
Skov H, Christensen J H, Goodsite M E, et al. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic[J]. Environmental Science & Technology, 2004, 38(8): 2373-2382.
|
17 |
Douglas T A, Loseto L L, Macdonald R W, et al. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review[J]. Environmental Chemistry, 2012, 9(4): 321-355.
|
18 |
Durnford D, Dastoor A. The behavior of mercury in the cryosphere: a review of what we know from observations[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D6): 1-30.
|
19 |
Douglas T A, Blum J D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack[J]. Environmental Science & Technology Letters, 2019, 6(4): 235-242.
|
20 |
Poulain A J, Lalonde J D, Amyot M, et al. Redox transformations of mercury in an Arctic snowpack at springtime[J]. Atmospheric Environment, 2004, 38(39): 6763-6774.
|
21 |
Littell J S, McAfee S A, Hayward G D. Alaska snowpack response to climate change: Statewide snowfall equivalent and snowpack water scenarios[J]. Water, 2018, 10(5): 668.
|
22 |
Brooks S B, Saiz-Lopez A, Skov H, et al. The mass balance of mercury in the springtime arctic environment[J]. Geophysical Research Letters, 2006, 33(13): 1-4.
|
23 |
Johnson K P, Blum J D, Keeler G J, et al. Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D17): 1-11.
|
24 |
Sherman L S, Blum J D, Johnson K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3(3): 173-177.
|
25 |
Douglas T A, Sturm M, Simpson W R, et al. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic[J]. Environmental Science & Technology, 2008, 42: 1542-1551.
|
26 |
Davidson C I. Clean hands: Clair Patterson’s crusade against environmental lead contamination[M]. Nova Science Pub Incorporated, 1999.
|
27 |
Berg T, Sekkesæter S, Steinnes E, et al. Springtime depletion of mercury in the European Arctic as observed at Svalbard[J]. Science of the Total Environment, 2003, 304(1): 43-51.
|
28 |
Ferrari C P, Dommergue A, Veysseyre A, et al. Mercury speciation in the French seasonal snow cover[J]. Science of the Total Environment, 2002, 287(1): 61-69.
|
29 |
Constant P, Poissant L, Villemur R, et al. Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada)[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8): 1-10.
|
30 |
Xie Zhouqing, Sun Liguang, Wang Xinming, et al. Mercury depletion in the Arctic atmosphere regarding to the sea ice change[J]. Chinese Journal of Polar Research, 2004, 16(3): 221-228.
|
|
谢周清, 孙立广, 王新明, 等. 北极大气中汞亏损与海冰演变[J]. 极地研究, 2004, 16(3): 221-228.
|
31 |
Lu J Y, Schroeder W H, Barrie L A, et al. Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry[J]. Geophysical Research Letters, 2001, 28(17): 3219-3222.
|
32 |
Mann J L, Long S E, Shuman C A, et al. Determination of mercury content in a shallow firn core from Greenland by isotope dilution inductively coupled plasma mass spectrometry[J]. Water, Air, and Soil Pollution, 2005, 163(1): 19-32.
|
33 |
Ferrari C P, Gauchard P A, Aspmo K, et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard[J]. Atmospheric Environment, 2005, 39(39): 7633-7645.
|
34 |
Ferrari C P, Padova C, Faïn X, et al. Atmospheric mercury depletion event study in Ny-Ålesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime[J]. Science of the Total Environment, 2008, 397(1): 167-177.
|
35 |
Mann E A, Mallory M L, Ziegler S E, et al. Mercury in Arctic snow: quantifying the kinetics of photochemical oxidation and reduction[J]. Science of the Total Environment, 2015, 509: 115-132.
|
36 |
Dommergue A, Ferrari C P, Gauchard P-A, et al. The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters, 2003, 30(12).
|
37 |
Lalonde J D, Poulain A J, Amyot M. The role of mercury redox reactions in snow on snow-to-air mercury transfer[J]. Environmental Science & Technology, 2002, 36(2): 174-178.
|
38 |
Faïn X, Grangeon S, Bahlmann E, et al. Diurnal production of gaseous mercury in the alpine snowpack before snowmelt[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D21): 1-12.
|
39 |
Hou Shugui, Qin Dahe. The ion elution effect on the main ion profiles of the glacier snowpacks[J]. Scientia Geographica Sinica, 1999, 19(6): 536-542.
|
|
侯书贵, 秦大河. 积雪淋溶作用对冰川雪层内主要阴阳离子记录的影响[J]. 地理科学, 1999, 19(6): 536-542.
|
40 |
Kang S, Huang J, Xu Y, et al. Changes in ionic concentrations and δ 18O in the snowpack of Zhadang glacier, Nyainqentanglha mountain, southern Tibetan Plateau[J]. Annals of Glaciology, 2008, 49: 127-134.
|
41 |
Sun Xuejun, Kang Shichang, Zhang Qianggong, et al. Behavior and environmental effects of mercury relevant to the melt of alpine glacier: a review[J]. Advances in Earth Science, 2017, 32(6): 589-598.
|
|
孙学军, 康世昌, 张强弓, 等. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
|
42 |
Guo Junming. The research of mercury change in snow and meltwater during melting period at Zhadang glacier, central Tibetan Plateau[D]. Beijing: Institute of Tibetan Plateau Research Chinese Academy of Science, 2012: 25-38.
|
|
郭军明. 青藏高原中部扎当冰川消融期积雪及其融水中汞的变化特征[D]. 北京: 中国科学院青藏高原研究所, 2012: 25-38.
|
43 |
Yang Y, Wang H, Smith S J, et al. Sulfate aerosol in the Arctic: Source attribution and radiative forcing[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(3): 1899-1918.
|
44 |
Hirdman D, Aspmo K, Burkhart J F, et al. Transport of mercury in the Arctic atmosphere: evidence for a spring-time net sink and summer-time source[J]. Geophysical Research Letters, 2009, 36(12): 1-5.
|
45 |
Yao Tandong, Wu Guangjian, Pu Jianchen, et al. The relationship between calcium and atmospheric dust in Guliya ice core[J]. Chinese Science Bulletin, 2004, 49(9): 888-892.
|
|
姚檀栋, 邬光剑, 蒲建辰, 等. 古里雅冰芯中钙离子与大气粉尘变化关系[J]. 科学通报, 2004, 49(9): 888-892.
|
46 |
Loewen M, Kang S, Armstrong D, et al. Atmospheric transport of mercury to the Tibetan Plateau[J]. Environmental Science & Technology, 2007, 41(22): 7632-7638.
|
47 |
Lalonde J D, Amyot M, Doyon M R, et al. Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D6): 1-8.
|