X img

官方微信

img

群号:冰川冻土交流群

QQ群:218834310

高级检索
作者投稿 专家审稿 编辑办公 编委办公 主编办公

冰川冻土 ›› 2021, Vol. 43 ›› Issue (2): 427-436.doi: 10.7522/j.issn.1000-0240.2021.0008

• 冰冻圈与全球变化 • 上一篇    下一篇

北极阿拉斯加春季积雪中汞的时空分布及其来源分析

倪鼎铭1,4(), 康世昌1,2,4, 张玉兰1,2, 窦挺峰4, 黄杰2,3, 孙世威1, 郭军明1()   

  1. 1.中国科学院 西北生态环境资源研究院 冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2.中国科学院 青藏高原地球科学卓越创新 中心,北京 100101
    3.中国科学院 青藏高原研究所 环境变化与地表过程重点实验室,北京 100101
    4.中国科学院大学,北京 100049
  • 收稿日期:2020-01-12 修回日期:2020-07-09 出版日期:2021-04-30 发布日期:2021-05-18
  • 通讯作者: 郭军明 E-mail:nidingming18@mails.ucas.edu.cn;junming.guo@lzb.ac.cn
  • 作者简介:倪鼎铭,硕士研究生,主要从事冰冻圈汞循环研究. E-mail: nidingming18@mails.ucas.edu.cn
  • 基金资助:
    中国科学院前沿科学重点研究项目“北极冰冻圈变化与可持续发展”(QYZDY-SSW-DQC021);中国科学院国际伙伴计划“北极冰冻圈变化与可持续发展国际大科学计划”(131B62KYSB20180003);国家重点研发计划项目(2020YFA0608503)

Spatiotemporal distribution and potential sources of snow mercury in Arctic Alaska during the spring season

Dingming NI1,4(), Shichang KANG1,2,4, Yulan ZHANG1,2, Tingfeng DOU4, Jie HUANG2,3, Shiwei SUN1, Junming GUO1()   

  1. 1.State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.CAS Center for Excellence in Tibetan Plateau Earth Sciences,Beijing 100101,China
    3.Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-01-12 Revised:2020-07-09 Online:2021-04-30 Published:2021-05-18
  • Contact: Junming GUO E-mail:nidingming18@mails.ucas.edu.cn;junming.guo@lzb.ac.cn

摘要:

开展北极雪冰中汞分布特征及其来源的探究,不仅可以丰富冰冻圈汞生物地球化学循环的认识,而且对评估北极环境中汞的潜在暴露风险具有现实意义。在2017年4月至5月对美国阿拉斯加的积雪进行大范围样品采集,探讨了该区域积雪中汞的空间分布特征及其成因、汞的沉降后过程以及潜在来源分析。研究表明:积雪中汞的空间分布受大气汞亏损事件(AMDEs)及人为源的共同影响,毗邻北冰洋海岸(如巴罗)积雪中总汞(THg)浓度较高,接近人为源的山地表层雪中THg浓度较高。巴罗雪坑中THg浓度随深度增加呈下降趋势。积雪中主要阴阳离子与THg的相关性分析表明,阿拉斯加积雪中THg的空间分布可能主要受北冰洋海盐气溶胶以及人类活动的影响。

关键词: 总汞, 积雪, 时空分布, 阿拉斯加, 北极

Abstract:

Investigation on the distribution, post-deposition process and potential sources of mercury (Hg) in Arctic snow can not only enhance our understanding of Hg biogeochemical cycling in the cryosphere, but it is also imperative for assessing the potential exposure risk of Hg to Arctic environment. Extensive sampling of surface snow was conducted in Alaska between April and May in 2017. Spatial pattern of snow Hg distribution was discussed to explore the post-deposition process of snow Hg and its potential sources. Measurements of total mercury (THg) showed that the spatial pattern of snow Hg was governed by both atmospheric mercury depletion events (AMDEs) and nearby anthropogenic sources. The higher THg concentration was generally observed near the Arctic Ocean (such as Barrow), and the regions in which were located near the anthropogenic sources. THg concentration showed a downward trend with depth in the Barrow snowpacks. By using correlation analysis among concentrations of major anions and cations, and THg, we concluded that THg in the Alaska snow might be mainly influenced by Arctic sea salt aerosol and anthropogenic emissions.

Key words: total mercury, snow cover, spatiotemporal distribution, Alaska, Arctic

中图分类号: 

  • P426.63+5