冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 690-700.doi: 10.7522/j.issn.1000-0240.2021.0011
刘擎(),李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年(
)
收稿日期:
2020-07-13
修回日期:
2021-01-21
出版日期:
2021-06-30
发布日期:
2021-05-18
通讯作者:
刘耕年
E-mail:1701214411@pku.edu.cn;Liugn@pku.edu.cn
作者简介:
刘擎,硕士研究生,主要从事冰川与冰缘地貌研究. E-mail: 基金资助:
Qing LIU(),Yiyin LI,Caiqi SUN,Zhenyu NIE,Weilin YANG,Zhijiu CUI,Gengnian LIU(
)
Received:
2020-07-13
Revised:
2021-01-21
Online:
2021-06-30
Published:
2021-05-18
Contact:
Gengnian LIU
E-mail:1701214411@pku.edu.cn;Liugn@pku.edu.cn
摘要:
冰缘地貌与沉积是冰冻圈环境变化的载体,对其开展深入研究对了解青藏高原地表过程与过去气候变化,具有重要意义。基于青藏高原(格尔木-亚东)冰缘地貌和沉积野外记录和实验分析,获得以下认识:格尔木在LGM时多年冻土至少下限到达海拔2 900 m,年均气温降至< -4 ℃,比现在至少低9 ℃,气候寒冷干燥;冰消期和全新世存在极端干冷的气候事件,可能存在地面温度< -10 ℃的冬季迅速降温气候期。楚玛尔、那曲谷露和纳木错的冰楔假型分别记录了末次冰期冷期多年冻土扩张,亚东古砂楔记录了早全新世冷事件。西藏羊八井泥炭沉积剖面孢粉和测年揭示,该区自新仙女木事件以来经历了严寒(12.8~9.8 ka)、暖湿(9.8~5.0 ka)、干冷(5.0 ka至今)的气候阶段。青藏高原(格尔木-亚东)广泛发育的冻融褶皱、成层坡积、风沙沉积等,是古环境重建的重要佐证,具有刻画冷暖-干湿的意义。
中图分类号:
刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700.
Qing LIU,Yiyin LI,Caiqi SUN,Zhenyu NIE,Weilin YANG,Zhijiu CUI,Gengnian LIU. Periglacial phenomena along the Qinghai-Tibet Highway from Golmud to Yadong and their climatic significance[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 690-700.
表1
冰缘地貌与沉积现象及年龄"
采样点 | 样品 编号 | 采样位置 | 海拔/m | 地貌 | 冰缘类型 | 采样深/cm | 测年方法 | 年代/ka | ||
---|---|---|---|---|---|---|---|---|---|---|
经度/E | 纬度/N | 测定年代 | 校正年代 | |||||||
格尔木南山口 | NSK01 | 94.76412° | 36.22398° | 3 014 | 冲积扇 | 古砂楔 | 121 | OSL | 1.7±0.27 | |
NSK02 | 94.76412° | 36.22398° | 3 014 | 冲积扇 | 古砂楔 | 172 | OSL | 2.8±1.60 | ||
NSK03 | 94.76412° | 36.22398° | 3 014 | 冲积扇 | 冲积物 | 180 | OSL | 13.3±4.30 | ||
NSK04 | 94.78235° | 36.29290° | 2 962 | 冲积扇 | 冲积物 | 174 | OSL | 15.4±0.85 | ||
NSK05 | 94.78235° | 36.29290° | 2 962 | 冲积扇 | 古砂楔 | 117 | OSL | 9.3±0.46 | ||
NSK06 | 94.78235° | 36.29290° | 2 962 | 冲积扇 | 古砂楔 | 138 | OSL | 14.5±1.00 | ||
NSK07 | 94.78235° | 36.29290° | 2 962 | 冲积扇 | 古砂楔 | 297 | OSL | 20.0±1.70 | ||
格尔木小干沟[ | GEMH-1 | 94.81075° | 36.13622° | 3 198 | 河流阶地 | 黄土 | 28 | OSL | 5.8±0.60 | |
GEMH-2 | 94.81075° | 36.13622° | 3 198 | 河流阶地 | 黄土 | 268 | OSL | 13.9±1.40 | ||
GEMH-3 | 94.81075° | 36.13622° | 3 198 | 河流阶地 | 成层坡积 | 298 | OSL | 17.3±1.80 | ||
GEMH-5 | 94.81075° | 36.13622° | 3 198 | 河流阶地 | 成层坡积 | 710 | OSL | 29.8±3.00 | ||
格尔木纳赤台[ 4级阶地 | NCT-4-2 | 94.54842° | 35.88252° | 3 599 | 河流T4阶地 | 冻融褶皱 | 200 | 14C | 9.23±0.055 | 10.386±0.136 |
NCT-4-3 | 94.54842° | 35.88252° | 3 584 | 河流T4阶地 | 冻融褶皱 | 125 | OSL | 11.1±1.20 | ||
SCH-4-2 | 94.36117° | 35.87612° | 3 793 | 河流T4阶地 | 冲积物 | 200 | OSL | 16.1±2.00 | ||
纳赤台2级阶地 | NCT-2-3 | 94.58670° | 35.88910° | 3 546 | 河流T2阶地 | 冻融褶皱 | 210 | OSL | 11.1±1.1 | |
纳赤台1级阶地 | NCT-1-2 | 94.62152° | 35.90382° | 3 510 | 河流T1阶地 | 冻融褶皱 | 100 | OSL | 4.3±0.4 | |
昆仑山口小南川剖面[ | XNC-1 | 94.32737° | 35.75204° | 4 100 | 坡地 | 黄土 | 270 | 14C | 3.475±0.23 | 3.791±0.292 |
XNC-2 | 94.32737° | 35.75204° | 4 100 | 坡地 | 黄土 | 400 | 14C | 3.545±0.09 | 3.842±0.118 | |
XNC-3 | 94.32737° | 35.75204° | 4 100 | 坡地 | 黄土 | 850 | 14C | 24.47±0.765 | 39.306±0.845 | |
XNC-4 | 94.32737° | 35.75204° | 4 100 | 坡地 | 成层坡积 | 900 | TL | 44.11±3.08 | ||
XNC-5 | 94.32737° | 35.75204° | 4 100 | 坡地 | 成层坡积 | 1 500 | TL | 60.56±1.72 | ||
昆仑山热水[ | RS01 | 95.27530° | 35.74410° | 3 960 | 冲积扇 | 冲积物 | 150 | 14C | 5.66±0.13 | 6.478±0.138 |
RS02 | 95.27530° | 35.74410° | 3 960 | 冲积扇 | 风成砂 | 270 | TL | 18.44±1.47 | ||
楚玛尔河 | CMEH-1 | 93.29566° | 35.30154° | 4 542 | 河流阶地 | 冲积物 | 135 | OSL | 2.5±0.3 | |
CMEH-2 | 93.29566° | 35.30154° | 4 542 | 河流阶地 | 冲积物 | 135 | OSL | 3.2±0.3 | ||
CMEH-3 | 93.29303° | 35.29825° | 4 554 | 河流阶地 | 冰楔假型 | 62 | OSL | 11.7±1.20 | ||
CMEH-4 | 93.29303° | 35.29825° | 4 554 | 河流阶地 | 冲积物 | 112 | OSL | 113.4±12.5 | ||
那曲谷露 | GLZN01 | 91.59879° | 30.77738° | 4 641 | 河流阶地 | 冰楔假型 | 201 | OSL | 27.0±3.10 | |
纳木错 | NMC01 | 91.10353° | 30.75915° | 4 794 | 湖滨阶地 | 冰楔假型 | 110 | OSL | 54.0±31.0 | |
羊八井 | YBJ04 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 60 | 14C | 1.185±0.02 | 1.118±0.036 |
YBJ05 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 160 | 14C | 1.525±0.035 | 1.433±0.056 | |
YBJ06 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 300 | 14C | 3.085±0.03 | 3.312±0.039 | |
YBJ07 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 370 | 14C | 7.13±0.03 | 7.967±0.019 | |
YBJ08 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 440 | 14C | 9.51±0.035 | 10.881±0.148 | |
YBJ09 | 90.55507° | 30.13429° | 4 418 | 冲沟 | 冻融褶皱 | 500 | 14C | 10.660±0.035 | 12.671±0.054 | |
亚东堆纳 | DN01 | 89.20815° | 27.91675° | 4 552 | 冲积扇 | 古砂楔 | 52 | OSL | 6.9±0.40 | |
亚东帕里 | PLB01 | 89.14846° | 27.75953° | 4 287 | 冲积扇 | 冻融褶皱 | 283 | OSL | 14.3±0.98 | |
PLB02 | 89.14846° | 27.75953° | 4 287 | 冲积扇 | 冻融褶皱 | 315 | OSL | 14.3±0.93 |
1 | Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64: 2783-2795. |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. | |
2 | Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246. |
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. | |
3 | Zhou Youwu, Qiu Guoqing, Chen Guodong, et al. Geocryology of China[M]. Beijing: Science Press, 2000: 299-365. |
周幼吾, 邱国庆, 程国栋, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 299-365. | |
4 | Jin Huijun, Jin Xiaoxia, He Ruixia, et al. Evolution of permafrost in China during the last 20 ka[J]. Science China: Earth Sciences, 2019, 62: 1207-1223. |
金会军, 金晓颖, 何瑞霞, 等. 两万年来的中国多年冻土形成演化[J]. 中国科学: 地球科学, 2019, 49(8): 1197-1212. | |
5 | Harris S A, Jin H J, He R X, et al. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
6 | Vandenberghe J, French H M, Jin H J, et al. The extent of permafrost during the Last Permafrost Maximum (LPM) on the Ordos Plateau, North China[J]. Quaternary Science Reviews, 2019, 214: 87-97. |
7 | Murton J B, Worsley P, Gozdzik J. Sand veins and wedges in cold aeolian environments[J]. Quaternary Science Reviews, 2000, 19: 899-922. |
8 | Ballantyne C K. The periglacial environment[M]. 3rd ed. Chichester, UK: John Wiley and Sons Ltd, 2007. |
9 | Pan B T, Li J J, Zhou S Z. Discovery and Significance of Ice Wedges During Penultimate GIaciation in the Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 1994, 39(7): 578-582. |
10 | Jin H J, Chang X L, Wang S L. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the Late Pleistocene[J]. Journal of Geophysical Research, 2007, 112: 1-23. |
11 | Liu X J, Lai Z P. Optical dating of sand wedges and ice-wedge casts from Qinghai Lake area on the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Boreas, 2013, 42: 333-341. |
12 | Wu Jichun, Sheng Yu, Zhao Lin, et a1. Characteristics and implication of sand wedges in Qaidam Basin, northeast Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2018, 38(1): 86-96. |
吴吉春, 盛煜, 赵林, 等. 柴达木盆地中的砂楔及其意义[J]. 第四纪研究, 2018, 38(1): 86-96. | |
13 | Wang Shaoling. Formation and evolution of permafrost on the Qinghai-Xizang Plateau since the Late Pleistocene[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 15-26. |
王绍令, 张维信. 试论青藏高原清水河地区晚更新世以来多年冻土的演化[J]. 冰川冻土, 1985, 7(1): 15-26. | |
14 | Wang Shaoling. Formation and evolution of permafrost on the Qinghai-Xizang Plateau since the Late Pleistocene[J]. Journal of Glaciology and Geocryology, 1989, 11(1): 69-75. |
王绍令. 晚更新世以来青藏高原多年冻土形成及演化的探讨[J]. 冰川冻土, 1989, 11(1): 69-75. | |
15 | Chen Yixin, Li Yingkui, Zhang Yue, et al. Late Quaternary deposition and incision sequences of the Golmud River and their environmental implications[J]. Quaternary Sciences, 2011, 31(2): 347-359. |
陈艺鑫, 李英奎, 张跃, 等. 末次冰期以来格尔木河填充-切割及驱动机制研究[J]. 第四纪研究, 2011, 31(2): 347-359. | |
16 | Zhang Mei, Chen Yixin, Yin Senlu, et al. Sedimental features and paleo-environment reconstruction of the slope deposit at Xiaogangou of the Golmud River[J]. Arid Land Geography, 2011, 34(6): 890-903. |
张梅, 陈艺鑫, 银森录, 等. 格尔木河小干沟坡积沉积特征与古环境重建[J], 干旱区地理, 2011, 34(6): 890-903. | |
17 | Cui Zhijiu, Wu Yongqiu, Liu Gengnian. Discovery of Neolithic Remains of human activities in Kunlun Pass area and its environmental significance[J]. Chinese Science Bulletin, 1995, 40(7): 624-627. |
崔之久, 伍永秋, 刘耕年. 昆仑山垭口区新石器时代人类活动遗迹的发现及其环境意义[J]. 科学通报, 1995, 40(7), 624-627. | |
18 | Liu Gengnian, Cui Zhijiu, Ge Daokai, et al. Sedimentary and climatic significance of the stratified slope deposits in the early period of last glaciation at Kunlunshan Pass[J]. Acta Geographica Sinica, 1997, 52(4): 331-338. 刘耕年, 崔之久, 葛道凯,等. 1997. 昆仑山垭口小南川末次冰期早期成层坡积的沉积特征和气候意义[J]. 地理学报, 52(4): 331-338.] |
19 | Liu Gengnian, Cui Zhijiu, Wu Yongqiu, et al. Record of environmental change in Reshui profile at Kunlunshan Pass since 18 ka[J]. Journal of Geomechanics, 1997, 3(4), 39-45. |
刘耕年, 崔之久, 伍永秋, 等. 昆仑山垭口热水剖面18000年以来的环境变化记录[J]. 地质力学学报, 1997, 3(4): 39-45. | |
20 | Ma Yahu. 1∶50 000 Regional geological survey report of Shisu Station Volume in Qinghai Province[R]. Golmud: Geological Survey Institute of Qinghai Provence, 2003. |
马延虎. 1∶5万幅青海省食宿站幅区域地质调查报告[M]. 格尔木: 青海省地调院, 2003. | |
21 | Pan Baotian, Chen Fahu. Permafrost evolution in the northeastern Qinghai-Tibetan Plateau during the last150 000 years[J]. Quaternary International, 1997, 19(2): 124-132. |
潘保田, 陈发虎. 青藏高原东北部15万年来的多年冻土演化[J]. 冰川冻土, 1997, 19(2): 124-132. | |
22 | Jin Huijun, Zhao Lin, Wang Saoling, et al. Evolution of permafrost and environmental changes of cold regions in eastern and interior Qinghai-Tibet Plateau since the Holocene[J]. Quaternary Sciences, 2006, 26(2): 198-210. |
金会军, 赵林, 王绍令, 等. 青藏高原中东部全新世以来多年冻土演化及寒区环境变化[J]. 第四纪研究, 2006, 26(2): 198-210. | |
23 | Li Chuanchuan, Chen Yixin, Nie Zhenyu, et al. Global warming accelerates the upfreezing of permafrost in arid middle Tianshan Mountains[J]. Chinese Science Bulletin, 2013, 58(31): 3806-3814. |
24 | Zhao L, Jin H J, Li C C, et al. The extent of permafrost in China during the local Last Glacial Maximum[J]. Boreas, 2013, 43(3): 688-698. |
25 | Guo Dongxin. Sand wedges on the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 1979, 1(1): 51-52. |
郭东信. 青藏高原上的沙楔[J]. 冰川冻土, 1979, 1(1): 51-52 | |
26 | Xu Shuying, Zhang Weixin, Xu Dexin, et al. Discussion on the periglacial development in the northeast marginal region of Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1984, 6(2): 15-25. |
徐叔鹰, 张维信, 徐德馥, 等. 青藏高原东北边缘地区冰缘发展探讨[J]. 冰川冻土, 1984, 6(2): 15-25. | |
27 | Chen Jie, Zhang Xujiao, Tian Mingzhong, et al. Ice-wedge casts discovered in the source area of Yellow River, northeast Tibetan Plateau and their paleoclimatic implication[J]. Quaternary Sciences, 2006, 26(1): 92-98. |
程捷, 张绪教, 田明中, 等. 黄河源区冰楔假型群的发育及其古气候意义[J]. 第四纪研究, 2006, 26(1): 92-98. | |
28 | Wu Jichun, Sun Liping, Sheng Yu, et al. Ice-wedge casts first discovered in the Qilian Mountains and their paleoclimatic implications[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 595-598. |
吴吉春, 孙立平, 盛煜, 等. 祁连山首次发现冰楔假型的意义[J]. 冰川冻土, 2008, 30(4): 595-598. | |
29 | Chang Xiaoli, Jin Huijun, He Rrixia. Formation and environmental evolution of sand wedges on the Tianshuihai North lakeshore in the western Kunlun Mountains[J]. Quaternary Sciences, 2011, 31: 112-119. |
常晓丽, 金会军, 何瑞霞. 西昆仑山甜水海北湖砂楔的形成与环境演变[J]. 第四纪研究, 2011, 31(1): 112-119. | |
30 | Qi Bangshen, Hu Daogong, Zhao Xitao, et al. Fossil sand wedges in the northern shore of Qinghai Lake: discovery and paleoclimatic implications[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1412-1419. |
戚帮申, 胡道功, 赵希涛, 等. 青海湖北岸原生砂楔的发现及其古气候意义[J]. 冰川冻土, 2014, 36(6): 1412-1419. | |
31 | Wang Nai’ang, Wang Tao, Shi Zhengtao, et al. The discovery of sand wedges of the last glaciation in the Hexi Corridor and its paleoclimatic significance[J]. Journal of Glaciology and Geocryology, 2001, 23(1): 46-50. |
王乃昂, 王涛, 史正涛, 等. 河西走廊末次冰期砂楔的发现及其古气候意义[J]. 冰川冻土, 2001, 23(1): 46-50. | |
32 | Yang X, Rost K T, Lehmkuhl F, et al. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum[J]. Quaternary International, 2004, 118-119: 69-85. |
33 | Yang X P, Preusser F, Radtke U. Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits[J]. Quaternary Science Reviews, 2006, 25: 923-932. |
34 | Wang Jianyong, Zhang Xujiao, He Zexin, et al. Discovery of Ice-wedge Casts in the Northern Margin of Loess Plateau and Their Implications[J]. Geoscience, 2015, 29(4): 816-824. |
王建勇, 张绪教, 何泽新, 等. 黄土高原北缘中部末次冰期冰楔假型的发现及意义[J]. 现代地质, 2015, 29(4): 816-824. | |
35 | Li Dawei, Li Dewen, Shen Xiaoming, et al. Discovery of sand wedge/ice wedge cast of Last Glaciation in Wuhai Basin and its paleoclimatic significance[J]. Journal of Earth Sciences and Environment, 2016, 38(3): 410-419. |
李大伟, 李德文, 沈晓明, 等. 乌海盆地内末次冰期砂楔/冰楔铸型的发现及古气候意义[J]. 地球科学与环境学报, 2016, 38(3): 410-419. | |
36 | Yu Yingxiao, Wang Nai’ang, Long Hao, et al. The age of sand wedges and its environmental significance at the southeast edge of Badain Jaran Desert[J]. Chinese Science Bulletin, 2017, 62: 3461-3469. |
余莺潇, 王乃昂, 隆浩, 等. 巴丹吉林沙漠东南缘砂楔年代及其环境意义[J]. 科学通报, 2017, 62: 3461-3469. | |
37 | Péwé T L. Palaeoclimatic significance of fossil ice wedges[J]. Biuletyn Peryglacjalny, 1966, 15: 65-73. |
38 | Harry D G, Gozdzik J S. Ice wedges: Growth, thaw transformation, and palaeoenvironmental significance[J]. Journal of Quaternary Science, 1988, 3: 39-55. |
39 | Murton J B, Kolstrup E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking?[J]. Progress in Physical Geography, 2003, 27(2): 155-170. |
40 | Murton J. Ice wedges and ice-wedge casts[M]//Encyclopedia of Quaternary science. 2nd ed. Elias S A, Mock C J. Elsevier: Amsterdam, 2013, 3: 436-451. |
41 | Li Guoxing. 14C dating of peat layers in the Dangxiong and Yangbajing basins and its implications[M]//Monograph on the Geology of the Qinghai-Tibet Plateau (4): Quaternary Geology and Glaciology. Beijing: Geological Publishing House, 1982: 131-136. [ |
黎国兴. 西藏当雄和羊八井盆地泥炭层14C年代测定及其意义[M]//地质矿产部青藏高原地质文集编委会, 青藏高原地质文集(4). 北京: 地质出版社, 1982: 131-136.] | |
42 | Sun Chengcheng, Zhou Limin, Zheng Xiangmin, et al. Peat record of Holocene climate change in the Yangbajing Basin, Tibet Plateau[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 149-155. |
孙诚诚, 周立旻, 郑祥民, 等. 西藏高原羊八井盆地全新世以来气候变化的泥炭记录[J]. 海洋地质与第四纪地质, 2016, 36(5): 149-155. | |
43 | Wang Lin, Niu Xin, Meng Qinghao, et al. Holocene climate change recorded by mercury concentration in peat: A case study from Qinonggou of Yangbajing, Tibet Plateau[J] Marine Geology & Quaternary Geology, 2017, 37(2): 169-176. |
王琳, 牛蕊, 孟庆浩, 等. 西藏羊八井七弄沟地区全新世温度变化的泥炭汞记录[J]. 海洋地质与第四纪地质, 2017, 37(2): 169-176. | |
44 | Peng X, Chen Y X, Li Y K, et al. Late Holocene glacier fluctuations in the Bhutanese Himalaya[J]. Global and Planetary Change, 2020, 187: 103137. |
45 | Wang Hua, Hong Yetang, Zhu Yongxuan, et al. The paleoclimatic significance of the peat humification in the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2004, 49(7): 686-670. |
王华, 洪业汤, 朱咏煊, 等. 青藏高原泥炭腐殖化度的古气候意义[J]. 科学通报, 2004, 49(7): 686-670. | |
46 | Liu Bing, Jin Heling, Sun Zhong, et al. Holocene millennial-scale climatic change recorded by grain size and chemical elements of peat deposits[J]. Journal of Glaciology and Geocryology, 2013, 33(4): 125-134. |
刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部泥炭沉积粒度与元素记录的全新世千年尺度的气候变化[J]. 冰川冻土, 2013, 35(3): 609-620. | |
47 | Liu Bing, Jin Heling, Sun Zhong, et al. Extraction of sensitive grain-size component from the KE peat deposit of the Gonghe Basin and its implication for Holocene climatic and environmental change[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 125-134. |
刘冰, 靳鹤龄, 孙忠, 等. 共和盆地开额泥炭剖面粒度敏感组分提取与全新世气候环境变化[J]. 海洋地质与第四纪地质, 2013, 33(4): 125-134. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[5] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[8] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[9] | 张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713. |
[10] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
[11] | 宋艾,杨久成,丁文娜,刘佳. 青藏高原高寒区生物地理学研究进展[J]. 冰川冻土, 2021, 43(3): 786-797. |
[12] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[13] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
[14] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[15] | 唐川川,王根绪,张莉,常瑞英,黄克威,杨晓明,杨凯,赵小祥,林丽,杨燕. 青藏高原高寒沼泽化草甸群落生物量及地下CNP对积雪增加的响应[J]. 冰川冻土, 2021, 43(2): 618-627. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000