冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 701-713.doi: 10.7522/j.issn.1000-0240.2021.0012
张延广1,3(),方小敏1(
),毛子强1,申茂华1,张涛2,昝金波1,杨胜利3
收稿日期:
2021-05-11
修回日期:
2021-06-02
出版日期:
2021-06-30
发布日期:
2021-05-18
通讯作者:
方小敏
E-mail:zhangyg17@lzu.edu.cn;fangxm@itpcas.ac.cn
作者简介:
张延广,硕士研究生,主要从事气候环境变化研究. E-mail: 基金资助:
Yanguang ZHANG1,3(),Xiaomin FANG1(
),Ziqiang MAO1,Maohua SHEN1,Tao ZHANG2,Jinbo ZAN1,Shengli YANG3
Received:
2021-05-11
Revised:
2021-06-02
Online:
2021-06-30
Published:
2021-05-18
Contact:
Xiaomin FANG
E-mail:zhangyg17@lzu.edu.cn;fangxm@itpcas.ac.cn
摘要:
冰冻圈演化不仅与青藏高原水塔变化、地表侵蚀风化及荒漠化密切相关,还深刻影响着亚洲季风系统和全球气候,冰碛物的粒度组成可以为冰冻圈演化提供重要信息,但高原冰碛物的特征粒度组成及其形成机理仍不清楚,高原冰碛物与高原冷黄土及河湖沉积物的关系也不明确。为此,选择青藏高原最大的冰帽——古里雅冰帽的冰碛物及系列冰水沉积物,开展系统粒度组成研究。研究发现:自终碛到冰川前端冰水扇及下游河流冰水沉积均表现出特征的双峰模态,即1~3 Φ(500~125 μm)的中细砂峰和6~8 Φ(16~4 μm)的细粉砂峰,前者可能由冰川压碎、寒冻风化崩裂作用造成,后者由冰川研磨作用形成,并受到源区基岩岩性软弱和组成颗粒大小的影响。冰川磨蚀的细粉砂组分含量,从冰碛物经冰水扇、河流到湖滩沉积物整体呈现减小趋势,粗粉砂在湖滩沉积中几乎完全被风吹走,粗粉砂直接成为下游黄土的物源并富集其中成为黄土特征组分,水流分选在开口湖泊中产生粗、细粉砂的明显富集,这些证据揭示出,无论是与冰川发育相关的尾闾湖沉积还是近源、远源的青藏高原及周边黄土沉积,其粉砂组成和来源,均可为高原冰冻圈的形成演化提供重要信息。
中图分类号:
张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713.
Yanguang ZHANG,Xiaomin FANG,Ziqiang MAO,Maohua SHEN,Tao ZHANG,Jinbo ZAN,Shengli YANG. Grain-size characteristics of tills and glaciofluvial deposits in the Guliya ice cap, Tibetan Plateau and its implication[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 701-713.
1 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts[J]. Journal of the Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
2 | Shi Yafeng. Evolution of the cryosphere in the Tibetan Plateau, China, and its relationship with the global change in the Mid Quaternary[J]. Journal of Glaciology and Geocryology, 1998, 20(3): 197-208. |
施雅风. 第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系[J]. 冰川冻土, 1998, 20(3): 197-208. | |
3 | Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1): 12-22. |
施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1): 12-22. | |
4 | Li Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang (Tibetan) Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, 19(1): 1-12. |
李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 1-12. | |
5 | Zheng Du, Lin Zhenyao, Zhang Xueqin. Progress in studies of Tibetan Plateau and global environmental change[J]. Earth Science Frontiers, 2002, 9(1): 95-102. |
郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘, 2002, 9(1): 95-102. | |
6 | Wang Yong, pan Baotian, Cui Ming. Interaction between the Qinghai-Tibet Plateau uplift and the East Asian environment from1.2 to 0.6 Ma BP[J]. Journal of Lanzhou University (Natural Sciences), 2006, 42(3): 1-7. |
王勇, 潘保田, 崔明. 1.2~0.6 Ma BP青藏高原的隆升与东亚地表各圈层的相互作用[J]. 兰州大学学报(自然科学版), 2006, 42(3): 1-7. | |
7 | Wang Kang, Zhang Tingjun, Mu Cuicui, et al. From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123. |
王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123. | |
8 | Zeng Lanhua, Xianjiao Ou, Chen Rong, et al. OSL dating on glacial sediments of the Last Glacial in headwater of Urumqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 761-769. |
曾兰华, 欧先交, 陈嵘, 等. 天山乌鲁木齐河源末次冰期冰川沉积光释光测年[J]. 冰川冻土, 2019, 41(4): 761-769. | |
9 | Shi Yafeng, Zheng Benxing. Studies on altitude and climatic environment in the middle and east parts of Tibetan Plateau during Quaternary Maximum Glaciation[J]. Journal of Glaciology and Geocryology, 1995, 17(2): 97-97. |
施雅风, 郑本兴. 青藏高原中东部最大冰期时代高度与气候环境探讨[J]. 冰川冻土, 1995, 17(2): 97-97. | |
10 | Li Bingyuan, Pan Baotian. Progress in paleogeographic study of the Tibetan Plateau[J]. Geographicl Research, 2002, 21(1): 61-70. |
李炳元, 潘保田. 青藏高原古地理环境研究[J]. 地理研究, 2002, 21(1): 61-70. | |
11 | Xu Liubing, Zhou Shangzhe, Cui Jianxin, et al. Dating of the Pleistocene glaciations around the Daocheng ice cap[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 528-534. |
许刘兵, 周尚哲, 崔建新, 等. 稻城冰帽区更新世冰川测年研究[J]. 冰川冻土, 2004, 26(5): 528-534. | |
12 | Yi Chaolu, Cui Zhijiu, Xiong Heigang. Numerical periods of Quaternary glaciations in China[J]. Quaternary Sciences, 2005, 25(5): 609-619. |
易朝路, 崔之久, 熊黑钢. 中国第四纪冰期数值年表初步划分[J]. 第四纪研究, 2005, 25(5): 609-619. | |
13 | Seong Y B, Owen L A, Bishop M P, et al. Quaternary glacial history of the Central Karakoram[J]. Quaternary Science Reviews, 2007, 26(25/26/27/28): 3384-3405. |
14 | Chen Yixin, Li Yingkui, Zhang Mei, et al. Much late onset of Quaternary glaciations on the Tibetan Plateau: determining the age of the Shishapangma Glaciation using cosmogenic 26Al and 10Be dating[J]. Science Bulletin, 2018, 63(5): 306-313. |
15 | Zhou Shangzhe, Xie Jinming, Xianjiao Ou, et al. Evidence for glaciation predating MIS-6 in the eastern Nyainqêntanglha Range, southeastern Tibet[J]. Science China: Earth Sciences, 2021, 51(6): 982-993. |
周尚哲, 谢金明, 欧先交, 等. 西藏东南部更早冰川作用新发现[J]. 中国科学: 地球科学, 2021, 51(6): 982-993. | |
16 | Yao Tandong, Oxygen isotope stratigraphy of the Guliya ice core[J]. Quaternary Sciences, 2000, 20(2): 165-170. |
姚檀栋. 古里雅冰芯氧同位素地层学[J]. 第四纪研究, 2000, 20(2): 165-170. | |
17 | Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320): 1821-1825. |
18 | Fang Xiaomin. The origin and provenance of Malan loess along the eastern margin of Qinghai-Xizang (Tibetan) Plateau and its adjacent area[J]. Science in China (Series B), 1994, 24(5): 539-546. |
方小敏. 青藏高原东部边缘及邻区马兰黄土成因与来源的初步研究[J]. 中国科学(B辑), 1994, 24(5): 539-546. | |
19 | Fang Xiaomin, Chen Fubin, Shi Yafeng, et al. Garze loess and the evolution of the cryosphere on the Tibet an Plateau[J]. Chinese Science Bulletin, 1996, 41(20): 1865-1867. |
方小敏, 陈富斌, 施雅风, 等. 甘孜黄土与青藏高原冰冻圈演化[J]. 科学通报, 1996, 41(20): 1865-1867. | |
20 | Cui Zhijiu, Wu Yongqiu, Liu Gengnian, et al. About the Kunlun-Yellow river tectonic[J]. Science in China (Series D), 1998, 28(1): 53-59. |
崔之久, 伍永秋, 刘耕年, 等. 关于“昆仑-黄河运动”[J]. 中国科学(D辑), 1998, 28(1): 53-59. | |
21 | Dreimanis A, Vagners U. The dependence of the composition of till upon the rule of bimodal composition[C]//VII International Conference, Études sur le Quaternaire dans le Monde. 1971, 2: 787-789. |
22 | Haldorsen S. Grain-size distribution of subglacial till and its realtion to glacial scrushing and abrasion[J]. Boreas, 1981, 10(1): 91-105. |
23 | Zhang Zhenshuan. Grain-size characteristics of moraines in the region of Mt. Bogda, Tian Shan[J]. Journal of Glaciology and Geocryology, 1983, 5(3): 191-200. |
张振拴. 天山博格达峰地区冰碛物的粒度特征[J]. 冰川冻土, 1983, 5(3): 191-200. | |
24 | Gao Shunli. Particle size characteristics of till and glaciofluyial deposits at the head of Wulumuqi Riuet, Tian Shan[J]. Journal of Xinjiang University, 1984, 10(4): 77-85. |
高顺利. 天山乌鲁木齐河源冰碛物与冰水沉积物的粒度特征[J]. 新疆大学学报, 1984, 10(4): 77-85. | |
25 | Chen Yaning, Wang Zhichao, Gao Shunli. A preliminary analysis on grain-size characteristics of glacial deposit in the region of the Mt. Namjagbarwa[J]. Arid Land Geography, 1986, 9(3): 32-40. |
陈亚宁, 王志超, 高顺利. 西藏南迦巴瓦峰地区冰川沉积物粒度特征的初步分析[J]. 干旱区地理, 1986, 9(3): 32-40. | |
26 | Kang Jiancheng. Grain-size characteristics of glacial debris, and explanation of the processes of glacial Tran-sports and sediments at the Gongba Glaciers in Mt. Gongga[J]. Journal of Glaciology and Geocryology, 1987, 9(1): 65-72. |
康建成. 贡嘎山贡巴冰川冰川岩屑的粒度特征及意义[J]. 冰川冻土, 1987, 9(1): 65-72. | |
27 | Liu Gengnian, Zhang Yue, Fu Hairong, et al. Sedimentary characteristics and subglacial processes of the glacial deposits in Hailuogou Glacier, Gongga Mountain[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 68-74. |
刘耕年, 张跃, 傅海荣, 等. 贡嘎山海螺沟冰川沉积特征与冰下过程研究[J]. 冰川冻土, 2009, 31(1): 68-74. | |
28 | Yao Tandong, Jiao Keqin, Zhang Xinping, et al. Glaciologic studies on Guliya ice cap[J]. Journal of Glaciology and Geocryology, 2012, 14(3): 233-241. |
姚檀栋, 焦克勤, 章新平, 等. 古里雅冰帽冰川学研究[J]. 冰川冻土, 2012, 14(3): 233-241. | |
29 | Yao Tandong, Jiao Keqin, Li Zhongqin, et al. Climatic and environmental records of the guriya ice cap[J]. Science in China (Series B), 1994, 24(7): 766-773. |
姚檀栋, 焦克勤, 李忠勤, 等. 古里雅冰帽气候环境记录[J]. 中国科学(B辑), 1994, 24(7): 766-773. | |
30 | Yao Tandong, Jiao Keqin, Yang Zhihong, et al. Climate change since the Little Ice Age in the Guliya Ice Core[J]. Science in China (Series B), 1995, 25(10): 1108-1114. |
姚檀栋, 焦克勤, 杨志红, 等. 古里雅冰芯中小冰期以来的气候变化[J]. 中国科学(B辑), 1995, 25(10): 1108-1114. | |
31 | Li Cange, Wang Mingda, Liu Weiguo, et al. Quantitative estimates of Holocene glacier meltwater variations on the Western Tibetan Plateau[J]. Earth and Planetary Science Letters, 2021, 559: 116766. |
32 | Zhang Jifeng, Feng Jinliang, Hu Gang, et al. Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications[J]. Quaternary International, 2015, 372: 9-22. |
33 | Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392. |
34 | Krumbein W C. Size frequency distributions of sediments[J]. Journal of Sedimentary Research, 1934, 4(2): 65-77. |
35 | Folk R L, Ward W C. Brazos River bar [Texas]; a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. |
36 | Lu Yin, Fang Xiaomin, Erwin A, et al. A 7.3-1.6 Ma grain size record of interaction between anticline uplift and climate change in the western Qaidam Basin, NE Tibetan Plateau[J]. Sedimentary Geology, 2015, 319: 40-51. |
37 | Lu Yin, Nico D, Andreas K, et al. Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(5): e2020PA003864. |
38 | Wu Anbin. The characteristics of grain-size parameters of till and their relation to sedimentary environments[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 47-53. |
武安斌. 冰碛物的粒度参数特征及其与沉积环境的关系[J]. 冰川冻土, 1983, 5(2): 47-53. | |
39 | Reading H G. Sedimentary environments and facies[M]. Oxford-Boston: Blackwell, 1978. |
40 | Lu Yin, Fang Xiaomin, Oliver F, et al. Characteristic grain-size component-A useful process-related parameter for grain-size analysis of lacustrine clastics?[J]. Quaternary International, 2018, 479: 90-99. |
41 | Qin Xiaoguang, Cai Binggui, Liu Tungsheng. Loess record of the aerodynamic environment in the east Asia monsoon area since 60 000 years before present[J]. Journal of Geophysical Research-Solid Earth, 2005, 110(1): 1-16. |
42 | Gaudin A M. An investigation of crushing phenomena[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1926, 73: 253-316. |
43 | Pan Renyi, Li Chuanchuan, Zhang Mei, et al. Analysis particle characteristics and differentiation processes of glacial sediment in Tianshan and eolian sediment in the Taklimakan desert[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(5): 744-756. |
潘仁义, 李川川, 张梅, 等. 天山冰川与塔克拉玛干风沙沉积的颗粒特征和分异过程分析[J]. 北京大学学报(自然科学版), 2012, 48(5): 744-756. | |
44 | Dong Yingwei. Comparison and analysis of glacier sediment grain size experiment[D]. Dalian: Liaoning Normal University, 2014. |
董应巍. 冰川沉积物粒度实验的对比与分析[D]. 大连: 辽宁师范大学, 2014. | |
45 | Liu Dongsheng. Loess and environment[M]. Beijing: Science Press, 1985. |
刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985. | |
46 | Pye K. Aeolian dust and dust deposits[M]. Netherlands: Elsevier, 1987. |
47 | Zan Jinbo, Fang Xiaomin, Yang Shengli, et al. Evolution of the arid climate in High Asia since 1 Ma: evidence from loess deposits on the surface and rims of the Tibetan Plateau[J]. Quaternary International, 2013, 313/314(4): 210-217. |
48 | Fang Xiaomin, An Zhisheng, Steven C, et al. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling[J]. Proceedings of the National Academy of Sciences, 2020, 117(40): 24729-24734. |
49 | Wu Guangjian, Yao Tandong, Xu Baiqing, et al. Grain size record of microparticles in the Muztagata ice core[J]. Science in China (Series D), 2006, 49(1): 10-17. |
邬光剑, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中微粒的粒度记录[J]. 中国科学(D辑), 2006, 36(1): 9-16. | |
50 | Xu Jianzhong, Sun Junying, Ren Jiawen, et al. Advances in the study of insoluble microparticle in ice-snow on the Qinghai-Xizang Plateau[J]. Advances in Earth Science, 2006, 21(3): 299-304. |
徐建中, 孙俊英, 任贾文, 等. 青藏高原冰雪不溶微粒研究进展[J]. 地球科学进展, 2006, 21(3): 299-304. | |
51 | Sun Jimin. Provenance, forming mechanism and transport of loess in China[J]. Quaternary Sciences, 2004, 24(2): 175-183. |
孙继敏. 中国黄土的物质来源及其粉尘的产生机制与搬运过程[J]. 第四纪研究, 2004, 24(2): 175-183. | |
52 | Stauch G, IJmker J, Pötsch S, et al. Aeolian sediments on the north-eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 57(60): 71-84. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[5] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[8] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[9] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[10] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
[11] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[12] | 蔡子怡,游庆龙,陈德亮,张若楠,陈金雷,康世昌. 北极快速增暖背景下冰冻圈变化及其影响研究综述[J]. 冰川冻土, 2021, 43(3): 902-916. |
[13] | 刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700. |
[14] | 欧先交,曾兰华,陈仁容,姚盼. 冰川沉积释光测年: 采样策略与测试选择[J]. 冰川冻土, 2021, 43(3): 756-766. |
[15] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000