1 |
Zachos J, Pagani M, Sloan L, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693.
|
2 |
Herbert T D, Lawrence K T, Tzanova A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
|
3 |
Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306.
|
4 |
Li J J, Zhou S Z, Zhao Z J, and Zhang J. The Qingzang movement: the major uplift of the Qinghai-Tibetan Plateau[J]. Science China Earth Science., 2015, 58(11): 2113-2122.
|
5 |
An Z S. Late Cenozoic climate change in Asia[M]. Netherlands: Springer Netherlands, 2014.
|
6 |
Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166.
|
7 |
Wang P, Clemens S, Beaufort L, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues[J]. Quaternary Science Reviews, 2005, 24: 595-629.
|
8 |
Schuster M. The Age of the Sahara Desert[J]. Science, 2006, 311(5762): 821.
|
9 |
Dupont L M, Rommerskirchen M, Mollenhauer, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants[J]. Earth and Planetary Science Letters, 2013, 375: 408-417.
|
10 |
Cerling T E, Harris J M, Macfadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature: International Weekly Journal of Science, 1997, 389: 153-158.
|
11 |
Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8): 657-660.
|
12 |
Zhang C, Yang W, Deng T, et al. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene[J]. Earth & Planetary Science Letters, 2009, 287(3/4): 311-319.
|
13 |
Hui Z, Gowan E J, Hou Z, et al. Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Tibetan Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110437.
|
14 |
Bowman C N, Wang Y, Wang X, et al. Pieces of the puzzle: lack of significant C4 in the late Miocene of southern California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 70-79.
|
15 |
Andrae J W, McInerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the late Pliocene[J]. Geophysical Research Letters, 2018, 45(10): 4831-4840.
|
16 |
Zhang Yu, Xiong Shangfa, Ding Zhongli, et al. Carbon-oxygen isotope records of pedogenic carbonate from the early miocene-pleistocene loess-red clay in the vicinity of the Liupanshan region and its implications for the early origin of C4 plants in the Chinese Loess Plateau[J]. Quaternary Sciences, 2011, 31(5): 800-811.
|
|
张瑜, 熊尚发, 丁仲礼, 等. 中新世以来六盘山邻区黄土-红黏土成土碳酸盐碳氧同位素记录及其对C4植物早期扩张的指示[J]. 第四纪研究, 2011, 31(5): 800-811.
|
17 |
Passey B H, Ayliffe L K, Kaakinen A, et al. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China[J]. Earth and Planetary Science Letters, 2009, 277(3): 443-452.
|
18 |
Wang H, Lu H, Zhao L, et al. Asian monsoon rainfall variation during the Pliocene forced by global temperature change[J]. Nature communications, 2019, 10(1): 1-8.
|
19 |
Ding Z L, Yang S L. C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3/4): 291-299.
|
20 |
Jiang Wenying, Peng Shuzhen, Hao Qingzhen, et al. The relationship between carbon isotope records of Pliocene red clay and uplift of Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2001, 46(24): 2065-2068.
|
|
姜文英, 彭淑贞, 郝青振, 等. 上新世红黏土的碳同位素记录与青藏高原隆升的关系[J]. 科学通报, 2001, 46(24): 2065-2068.
|
21 |
Lu J Y, Algeo T J, Zhuang G S, et al. The Early Pliocene global expansion of C4 grasslands: a new organic carbon-isotopic dataset from the north China plain-Science Direct[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109454.
|
22 |
Hou Z F, Li J J, Song C H, et al. Late-Miocene palaeoecological evolution of the Tianshui Basin, NE Tibetan Plateau: evidence from stable organic carbon isotope record[J]. Journal of Asian Earth Sciences, 2015, 98: 296-303.
|
23 |
Wang Y, Deng T. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1): 322-338.
|
24 |
Connin S L, Feng X, Virginia R A. Isotopic discrimination during long-term decomposition in an arid land ecosystem[J]. Soil Biology and Biochemistry, 2001, 33(1): 41-51.
|
25 |
And L J, Zhaodon F, Lingyu T. Late Quaternary monsoon patterns on the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 1988, 13(2): 125-135.
|
26 |
Li J, Ma Z, Li X, et al. Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau[J]. Geomorphology, 2017, 295: 393-405.
|
27 |
Liu W, Yang H, Ning Y, et al. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau[J]. Organic Geochemistry, 2007, 38(9): 1571-1579.
|
28 |
Li X, Peng T, Ma Z, et al. The sources and transport dynamics of eolian sediments in the NE Tibetan Plateau since 6.7 Ma[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3): e2019GC008682.
|
29 |
O’Leary M H. Carbon isotopes in photosynthesis[J]. BioScience, 1988, 38(5): 328-336.
|
30 |
Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
|
31 |
Balesdent J, Girardin C, Mariotti A. Site-related δ13C of tree leaves and soil organic matter in a temperate forest[J]. Ecology, 1993, 74(6): 1713-1721.
|
32 |
Ehleringer J R, Flanagan B. Carbon isotope ratios in belowground carbon cycle processes[J]. Ecological Applications, 2000, 10(2): 412-422.
|
33 |
Wang G, Feng X, Han J, et al. Paleovegetation reconstruction using δ13Corg of soil organic matter[J]. Biogeosciences, 2008, 5(5): 1325-1337.
|
34 |
Yang Y, Ji C, Chen L, et al. Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau[J]. Functional Ecology, 2015, 29(6): 839-848.
|
35 |
Guo Wenkang. Modern-process study on organic carbon isotopes in monsoonal margin, Qinghai-Tibet Plateau and Xinjiang of China[D]. Lanzhou: Lanzhou University, 2016.
|
|
郭文康. 中国季风边缘区、青藏高原和新疆干旱区有机碳同位素现代过程研究[D]. 兰州: 兰州大学, 2016.
|
36 |
Schubert B A, Jahren A H. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction[J]. Earth-Science Reviews, 2018, 177: 637-642.
|
37 |
Nordt L, Fischer J V, Tieszen L, Tubbs J. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains[J]. Quaternary Science Reviews, 2008, 27(15): 1600-1611.
|
38 |
Han Jiamao, Jiang Wenying, Houyuan Lü, et al. Carbon and oxygen isotopes of calcium nodules in loess (II) carbon isotopes and their paleoenvironmental significance[J]. Quaternary Research, 1995, 4(4): 367-377.
|
|
韩家楙, 姜文英, 吕厚远, 等. 黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义[J]. 第四纪研究, 1995, 4(4): 367-377.
|
39 |
Kaakinen A, Sonninen E, Lunkka J P. Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: implications for late Neogene paleoclimate and paleovegetation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 237(2/3/4): 359-369.
|
40 |
Sun J M, Liu W G, Liu Z J, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200.
|
41 |
Su Qingda. Late Cenozoic Qaidam Basin climatic and environmental evolution and forcing mechanisms[D]. Lanzhou: Lanzhou University, 2020.
|
|
苏庆达. 柴达木盆地晚新生代气候与环境演化及驱动机制研究[D]. 兰州: 兰州大学, 2020.
|
42 |
Chen Mingyang, Zhao Huimin. Carbon isotopic records and palaeomonsoonal climate in the Loess Plateau of China during7.3~1.9 Ma[J]. Chinese Science Bulletin, 1997, 4(2): 174-177.
|
|
陈明扬, 赵惠敏. 7.3~1.9 Ma期间中国黄土高原碳同位素记录与古季风气候[J]. 科学通报, 1997, 4(2): 174-177.
|
43 |
Jiang Wenying, Han Jiamao, Liu Dongsheng. Aridification and its influence on carbon isotope composition of pedogenic carbonate[J]. Quaternary Research, 2001, 4(5): 427-435.
|
|
姜文英, 韩家楙, 刘东生. 干旱化对成土碳酸盐碳同位素组成的影响[J]. 第四纪研究, 2001, 4(5): 427-435.
|
44 |
Rao Zhiguo, Zhu Zhaoyu, Chen Fahu, et al. Reviews on the stable carbon isotopic researches of organic matter of Chinese loess[J]. Advances in Earth Science, 2006, 21(1): 62-69.
|
|
饶志国, 朱照宇, 陈发虎, 等. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展, 2006(1): 62-69.
|
45 |
Li X, Peng T, Ma Z, et al. Late Miocene-Pliocene climate evolution recorded by the red clay cover on the Xiaoshuizi planation surface, NE Tibetan Plateau[J]. Climate of the Past, 2019, 15(2): 405-421.
|
46 |
Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses[J]. Science, 1999, 285(5429): 876-879.
|
47 |
Pagani M, Liu Z, Lariviere J, et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations[J]. Nature Geoscience, 2010, 3(1): 27-30.
|
48 |
Hoenisch B, Hemming N G, Archer D, et al. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition[J]. Science, 2009, 324(5934): 1551-1554.
|
49 |
Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records[J]. Earth and Planetary Science Letters, 2010, 292(1): 201-211.
|
50 |
Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4).
|
51 |
Lu H Y, Guo Z T. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: a review[J]. Science China Earth Science, 2014, 57(1): 70-79.
|
52 |
Shen X, Wan S, France-Lanord Christian, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308.
|
53 |
Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
|