1 |
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
|
2 |
Mudelsee M, Bickert T, Lear C H, et al. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records[J]. Reviews of Geophysics, 2014, 52(3): 333-374.
|
3 |
Raymo M E. The initiation of Northern Hemisphere glaciation[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 353-383.
|
4 |
Li Jijun, Fang Xiaomin. Uplift of Tibetan Plateau and its effects on environmental changes[J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574.
|
|
李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15): 1569-1574.
|
5 |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
|
6 |
Chang M, Wang X, Liu H, et al. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau)[J]. PNAS, 2008, 105(36): 13246-13251.
|
7 |
Deng T, Wang X, Fortelius M, et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores[J]. Science, 2011, 333(6047): 1285-1288.
|
8 |
Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(7): 400-423.
|
9 |
Guo B H, Liu S P, Peng T J, et al. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin[J]. Geomorphology, 2018, 303: 271-283.
|
10 |
Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 45-55.
|
11 |
Guo B H, Peng T J, Yu H, et al. Magnetostratigraphy and palaeoclimatic significance of the Late Pliocene red clay‐Quaternary loess sequence in the Lanzhou Basin, western Chinese Loess Plateau[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086556.
|
12 |
Jia G, Li Z, Peng P, et al. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior[J]. Earth and Planetary Science Letters, 2012, 321: 32-40.
|
13 |
Zhou B, Bird M, Zheng H, et al. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 2017, 7(1): 170.
|
14 |
Shen X, Wan S, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene-Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502: 74-83.
|
15 |
Lu J, Algeo T J, Zhuang G, et al. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109454.
|
16 |
Sun J, Lü T, Zhang Z, et al. Stepwise expansions of C4 biomass and enhanced seasonal precipitation and regional aridity during the Quaternary on the southern Chinese Loess Plateau[J]. Quaternary Science Reviews, 2012, 34: 57-65.
|
17 |
Rao Zhiguo, Zhang Xiao, Xue Qian, et al. Primary organic carbon isotopic study result of Xifeng loess/red clay profile[J]. Quaternary Sciences, 2012, 32(4): 825-827.
|
|
饶志国, 张晓, 薛骞, 等. 西峰红黏土/黄土剖面有机碳同位素研究的初步结果[J]. 第四纪研究, 2012, 32(4): 825-827.
|
18 |
Wang Y, Deng T. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 322-338.
|
19 |
Biasatti D, Wang Y, Deng T. Strengthening of the East Asian summer monsoon revealed by a shift in seasonal patterns in diet and climate after 2~3 Ma in northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(1): 12-25.
|
20 |
Miao Y, Herrmann M, Wu F, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia?Global cooling or Tibetan Plateau uplift: A review[J]. Earth-Science Reviews, 2012, 112(3/4): 155-172.
|
21 |
Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences. 2010, 38: 77-102.
|
22 |
Ye Xiyan, Feng Zhantao, Peng Tingjiang, et al. Preliminary clay minerals on the loess-paleosol sequence in the Xijin core, Lanzhou[J]. Journal of Lanzhou University: Natural Sciences, 2018, 54(1): 75-81.
|
|
叶喜艳, 冯展涛, 彭廷江, 等. 兰州西津黄土-古土壤序列中黏土矿物特征[J]. 兰州大学学报(自然科学版), 2018, 54(1): 75-81.
|
23 |
Guo B H, Peng T J, Feng Z T, et al. Pedogenic components of Xijin loess from the western Chinese Loess Plateau with implications for the Quaternary climate change[J]. Journal of Asian Earth Sciences, 2019, 170: 128-137.
|
24 |
Luo Siwei. Analysis of shear line formation in eastern Tibetan Plateau of China in winter[J].Acta Meteorologica Sinica, 1963, 33(3): 305-319.
|
|
罗四维. 冬季我国高原东侧切变线形成的分析[J]. 气象学报, 1963, 33(3): 305-319.
|
25 |
Ding Z, Derbyshire E, Yang S, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3): 1-5.
|
26 |
Xie L, Spiro B, Wei G. Purification of BaSO4 precipitate contaminated with organic matter for oxygen isotope measurements (δ18O and Δ17O) [J]. Rapid Communications in Mass Spectrometry, 2016, 30(14): 1727-1733.
|
27 |
Wang Suping. Molecular distribution and C-H isotopes of n-alkanes of lacustrine sediments since the last deglaciation in the northeast Tibet Plateau[D]. Lanzhou: Lanzhou University, 2011.
|
|
王素萍. 青藏高原东北部湖泊沉积物末次冰消期以来正构烷烃分子分布特征及其碳、氢同位素的古环境意义[D]. 兰州: 兰州大学, 2011.
|
28 |
Xu Yuanbin. Compound specific carbon and hydrogen isotopes of long chain n-alkanes extracted from past 15 ka lacustrine sediments of Gonghai Lake, Shanxi Province, and their paleoclimatic significance[D]. Lanzhou: Lanzhou University, 2014.
|
|
许元斌. 山西公海过去15 ka以来的湖泊沉积物长链正构烷烃单体碳/氢同位素及其古气候意义[D]. 兰州: 兰州大学, 2014.
|
29 |
Rieley G, Collier R J, Jones D M, et al. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 1991, 352(6334): 425-427.
|
30 |
Spooner N, Rieley G, Collister JW, et al. Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment[J]. Organic Geochemistry, 1994, 21(6): 823-827.
|
31 |
Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4): 287-294.
|
32 |
Cerling T E, Quade J, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature, 1989, 342(6246): 163-166.
|
33 |
Xie Shucheng, Wang Zhiyuan, Wang Hongmei, et al. The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: the molecular fossil record[J]. Science in China Series D-Earth Sciences, 2002, 45(1): 53-62.
|
|
谢树成, 王志远, 王红梅, 等. 末次间冰期以来黄土高原的草原植被景观: 来自分子化石的证据[J]. 中国科学:D辑 地球科学, 2002, 45(1): 28-35.
|
34 |
Rao Zhiguo, Guo Wenkang, Xue Qian, et al. Assessment on primary provenance of organic matter in loess/paleosol sequences in the western Chinese Loess Plateau: Local biomass or bedrocks in dust source regions?[J]. Quaternary Sciences, 2015, 35(4): 819-827.
|
|
饶志国, 郭文康, 薛骞, 等. 黄土高原西部地区黄土地层有机质主要来源分析[J]. 第四纪研究, 2015, 35(4): 819-827.
|
35 |
Melillo J C, Aber J D, Linkins A E, et al. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter[J]. Plant and Soil, 1989, 115(2): 189-198.
|
36 |
Wang Guoan. Application of stable carbon isotope for paleoenvironmental research[J]. Quaternary Science, 2003, 23(5): 471-484.
|
|
王国安. 稳定碳同位素在第四纪古环境研究中的应用[J]. 第四纪研究, 2003, 23(5): 471-484.
|
37 |
Zhang Z, Zhao M, Lu H, et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2003, 214(3/4): 467-481.
|
38 |
Liu W, Huang Y, An Z, et al. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3-4): 243-254.
|
39 |
Rao Zhiguo, Chen Fahu, Cao Jie, et al. Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western Loess Plateau during the Last Glacial and Holocene periods[J]. Quaternary Science, 2005, 25(1): 107-114.
|
|
饶志国, 陈发虎, 曹洁, 等. 黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3/C4植被类型转换研究[J]. 第四纪研究, 2005, 25(1): 107-114.
|
40 |
Zhang Xiao. Variations and paleoclimatic significance of loess organic carbon isotopes in Longxi Loess Plateau and Xinjiang Ili Basin[D]. Lanzhou: Lanzhou University, 2013.
|
|
张晓. 陇西黄土高原和新疆伊犁盆地黄土有机碳同位素的变化及其古环境意义[D]. 兰州: 兰州大学, 2013.
|
41 |
Hatté C, Fontugne M, Rousseau D D, et al. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian[J]. Geology, 1998, 26 (7): 583-586.
|
42 |
Sun B, Liu W, Sun Y, et al. The precipitation “threshold value” on C4 /C3 abundance of the Loess Plateau, China[J]. Science Bulletin, 2015, 60(7): 718-725.
|
43 |
Rao Z, Xu Y, Xia D, et al. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia[J]. Organic Geochemistry, 2013, 63: 56-63.
|
44 |
Liu W, Yang H, Ning Y, et al. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau[J]. Organic Geochemistry, 2007, 38(9): 1571-1579.
|
45 |
Gough M A, and Rowland S J. Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 1990, 344(6267): 648-650.
|
46 |
Guo Pengfei, He Sheng, Zhu Shukui, et al. Genesis and composition of ‘baseline hump’ in biodegraded oil samples from Biyang Depression[J]. Oil & Gas Geology, 2014, 35(3): 317-325.
|
|
国朋飞, 何生, 朱书奎,等. 泌阳凹陷生物降解油"基线鼓包"成因及化合物组成[J]. 石油与天然气地质, 2014, 35(3): 317-325.
|
47 |
Yu Hao. The strata division of the Gaolanshan loess and its Quaternary climate evolution[D]. Lanzhou: Lanzhou University, 2017.
|
|
于昊. 兰州皋兰山黄土地层划分及其记录的气候演变[D]. 兰州: 兰州大学, 2017.
|
48 |
Mansuy L, Philp R P, Allen J. Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples[J]. Environmental Science & Technology, 1997, 31(12): 3417-3425.
|
49 |
Mazeas L, Budzinski H, Raymond N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Organic Geochemistry, 2002, 33(11): 1259-1272.
|
50 |
Feakins S J, Levin N E, Liddy H M, et al. Northeast African vegetation change over 12 my[J]. Geology, 2013, 41(3): 295-298.
|
51 |
Tipple B J, Meyers S R, Pagani M. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies[J]. Paleoceanography, 2010, 25: PA3202.
|
52 |
Beerling D J, Royer D L. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 2011, 4(7): 418-420.
|
53 |
Schubert B A, Jahren A H. Global increase in plant carbon isotope fractionation following the last glacial maximum caused by increase in atmospheric pCO2[J]. Geology, 2015, 43(5): 435-438.
|
54 |
Tipple B J, Pagani M. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 250-262.
|
55 |
Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26: PA4213.
|
56 |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1).
|
57 |
Edwards E J, Osborne C P, Stromberg C A E, et al. The Origins of C4 grasslands: Integrating evolutionary and ecosystem science[J]. Science, 2010, 328(5978): 587-591.
|
58 |
Quade J, Cerling E T, Bowman R J. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in[J]. Nature, 1989, 342(6246): 163-166.
|
59 |
Macfadden B J, Cerling T E. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: A 10 million-year sequence from the Neogene of Florida[J]. Journal of Vertebrate Paleontology, 1996, 16(1): 103-115.
|
60 |
Latorre C, Quade J, McIntosh W C. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 83-96.
|
61 |
Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J]. Nature, 1994, 367(6459): 162-165.
|
62 |
Cerling T E, Harris J M, Macfadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 1997, 389(6647): 153-158.
|
63 |
Sun J, Lü T, Gong Y, et al. Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior[J]. Earth and Planetary Science Letters, 2013, 380: 1-11.
|
64 |
Zhang C, Wang Y, Deng T, et al. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene[J]. Earth and Planetary Science Letters, 2009, 287(3/4): 311-319.
|
65 |
Andrae J W, McInerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the Late Pliocene[J]. Geophysical Research Letters, 2018, 45(10): 4831-4840.
|
66 |
Yamamoto S, Sawada K, Nakamura H, et al. Stable carbon isotopic variation of long chain n-alkanoic acids in the equatorial Pacific sediments over the last 40 Ma: Implications for expansion of C4 grassland in South America[J]. Organic Geochemistry, 2014, 76: 62-71.
|
67 |
An Z, Huang Y, Liu W, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9): 705-708.
|
68 |
Jiang W, Peng S, Hao Q, et al. Carbon isotopic records in paleosols over the Pliocene in Northern China: implication on vegetation development and Tibetan uplift[J]. Chinese Science Bulletin, 2002, 47(8): 687-690.
|
69 |
Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants[J]. Earth and Planetary Science Letters, 2013, 375: 408-417.
|
70 |
Huang Y. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance[J]. Science, 2001, 293(5535): 1647-1651.
|
71 |
Yang S, Ding Z, Wang X, et al. Negative δ18O–δ13C relationship of pedogenic carbonate from northern China indicates a strong response of C3/C4 biomass to the seasonality of Asian monsoon precipitation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317: 32-40.
|
72 |
Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses[J]. Science, 1999, 285(5429): 876-879.
|
73 |
Hoetzel S, Dupont L, Schefuß E, et al. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 2013, 6(12): 1027-1030.
|