冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 818-826.doi: 10.7522/j.issn.1000-0240.2021.0023
范义姣1(),马箫忆1,刘慧1,王树源1,杨军怀1,陈梓炫1,高福元2,贾佳3,夏敦胜1(
)
收稿日期:
2021-04-21
修回日期:
2021-06-10
出版日期:
2021-06-30
发布日期:
2021-05-18
通讯作者:
夏敦胜
E-mail:fanyj18@lzu.edu.cn;dsxia@lzu.edu.cn
作者简介:
王修喜,副教授,主要从事构造地貌演化与低温热年代学研究. E-mail:基金资助:
Yijiao FAN1(),Xiaoyi MA1,Hui LIU1,Shuyuan WANG1,Junhuai YANG1,Zixuan CHEN1,Fuyuan GAO2,Jia JIA3,Dunsheng XIA1(
)
Received:
2021-04-21
Revised:
2021-06-10
Online:
2021-06-30
Published:
2021-05-18
Contact:
Dunsheng XIA
E-mail:fanyj18@lzu.edu.cn;dsxia@lzu.edu.cn
摘要:
选取位于中亚干旱区东部新疆天山地区的两个典型黄土沉积剖面,通过磁学参数(χARM/SIRM)、亮度(L*)、有机碳/氮同位素(δ13Corg和δ15N)等记录,对研究区内全新世以来的气候环境进行重建。结果表明:早全新世,χARM/SIRM、L*指示黄土成壤较弱、有机质含量低,δ13Corg记录表明区域降水较少,共同反映该时期地表植被覆盖低、相对干旱的气候环境;中晚全新世,χARM/SIRM、L*和δ13Corg记录的湿度逐渐增加,黄土δ15N偏正变化,指示地表生态系统生产力增强、植被覆盖增加,表明该区域气候适宜期发生在中晚全新世。中亚干旱区东部全新世以来的气候环境特征,与北半球高纬度冰盖、太阳辐射强度的变化密切相关。
中图分类号:
范义姣,马箫忆,刘慧,王树源,杨军怀,陈梓炫,高福元,贾佳,夏敦胜. 黄土记录的中亚干旱区东部全新世气候与环境演化[J]. 冰川冻土, 2021, 43(3): 818-826.
Yijiao FAN,Xiaoyi MA,Hui LIU,Shuyuan WANG,Junhuai YANG,Zixuan CHEN,Fuyuan GAO,Jia JIA,Dunsheng XIA. Climatic and environmental evolution during the Holocene in the eastern Arid Central Asia recorded by loess-paleosol sequences[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 818-826.
1 | Clark M K, Farley K A, Zheng Dewen, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88. |
2 | Yin An. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 2010, 488(1/2/3/4): 293-325. |
1 | Ye Wei, Sang Changqing, Zhao Xingyou. Spatial-temporal distribution of loess and source of dust in Xinjiang[J]. Journal of Desert Research, 2003, 23(5): 514-520. |
3 | Zhang Guowei, Guo Anlin, Yao Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(3): 23-32. |
1 | 叶玮, 桑长青, 赵兴有. 新疆黄土分布规律及粉尘来源[J]. 中国沙漠, 2003, 23(5): 514-520. |
3 | 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23-32. |
2 | Song Yougui, Lai Zhongping, Li Yun, et al. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410. |
4 | Wang Xianyan, Lu Huayu, Vandenberghe J, et al. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment[J]. Global and Planetary Change, 2012, 88/89: 10-19. |
3 | Li Jijun. The patterns of environmental changes since late Pleistocene in northwestern China[J]. Quaternary Sciences, 1990, 10(3): 197-204. |
李吉均. 中国西北地区晚更新世以来环境变迁模式[J]. 第四纪研究, 1990, 10(3): 197-204. | |
5 | Fang Xiaomin, Fang Yahui, Zan Jinbo, et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews, 2019, 190: 460-485. |
4 | Chen Fahu, Jia Jia, Chen Jianhui, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. |
6 | Wang Weitao, Zheng Dewen, Li Chaopeng, et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4): e2019TC005705. |
7 | Li Jinjun. Tibetan Plateau uplift and the climate changes of Asia[M]. Beijing: Science Press, 2006. |
5 | Gao Fuyuan, Jia Jia, Xia Dunsheng, et al. Assessment of the dominant climatic factor affecting pedogenic development in eolian sequences during the Holocene in arid Central Asia[J]. Quaternary International, 2019, 502: 78-84. |
7 | 李吉均. 青藏高原隆升与亚洲环境演变[M]. 北京: 科学出版社, 2006. |
6 | Kang Shugang, Wang Xulong, Roberts H M, et al. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: evidence from loess sections[J]. Quaternary Science Reviews, 2020, 246: 106553. |
8 | Duvall A R, Clark M K, van der Pluijm B, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 520-526. |
7 | Hatté C, Antoine P, Fontugne M, et al. δ13C of loess organic matter as a potential proxy for paleoprecipitation[J]. Quaternary Research, 2001, 55(1): 33-38. |
8 | Liu Junchi, Liu Weiguo. Soil nitrogen isotopic composition of the Xifeng loess-paleosol sequence and its potential for use as a paleoenvironmental proxy[J]. Quaternary International, 2017, 440: 35-41. |
9 | Guo Jinjing, Wang Kaixuan, Han Wenfeng, et al. Cenozoic kinematic history of the Lintan-Minxian-Tanchang Fault in West Qinling and its dynamic process[J]. Northwestern Geology, 2018, 51(3): 80-92. |
Liu Jiangsi, Algeo T J, Yang Huan, et al. Changes in vegetation type on the Chinese Loess Plateau since 75 ka related to East Asian summer monsoon variation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 124-139. | |
郭进京, 王凯旋, 韩文峰, 等. 西秦岭临潭-岷县-宕昌断裂带新生代运动学历史及动力学分析[J]. 西北地质, 2018, 51(3): 80-92. | |
10 | Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 2006, 118(5/6): 651-671. |
Rao Zhiguo, Xu Yuanbin, Xia Dunsheng, et al. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia[J]. Organic Geochemistry, 2013, 63: 56-63. | |
11 | Zheng Dewen, Zhang Peizhen, Wan Jinlin, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248: 198-208. |
Xie Haichao, Zhang Huiwen, Ma Jianying, et al. Trend of increasing Holocene summer precipitation in arid Central Asia: evidence from an organic carbon isotopic record from the LJW10 loess section in Xinjiang, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 24-32. | |
12 | Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4): 359-362. |
Wang Qiang, Wang Xin, Wei Haitao, et al. Climatic significance of the stable carbon isotopic composition of surface soils in northern Iran and its application to an early Pleistocene loess section[J]. Organic Geochemistry, 2019, 127: 104-114. | |
13 | Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 2006, 111: F03002. |
Liu Weiguo, Wang Zheng. Nitrogen isotopic composition of plant-soil in the Loess Plateau and its responding to environmental change[J]. Chinese Science Bulletin, 2009, 54(2): 272-279. | |
14 | van der Beek P, Melle J V, Guillot S, et al. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya[J]. Nature Geoscience, 2009, 2(5): 364-368. |
13 | 刘卫国, 王政. 黄土高原现代植物-土壤氮同位素组成及对环境变化的响应[J]. 科学通报, 2008, 53(23): 2917-2924. |
15 | Hetzel R, Dunkl I, Haider V, et al. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2013, 41(9): 297-298. |
14 | Aizen V B, Aizen E M, Joswiak D R, et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet)[J]. Annals of Glaciology, 2006, 43(1): 49-60. |
16 | Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang Movement: the major uplift of the Qinghai-Tibetan Plateau[J]. Science China: Earth Sciences, 2015, 45(10): 1597-1608. |
15 | Zhang Jianxin, Liao Feijia, Zhang Lei. Evaluation of the effect of evaporation on water capacity of precipitation in the north slope of the middle Tienshan Mountains[C]// Proceedings of 2006 annual meeting of Chinese Meteorological Society: symposium on weather modification technology. Beijing: China Meteorological Society, 2006: 21-23. [ |
16 | 李吉均, 周尚哲, 赵志军, 等. 论青藏运动主幕[J]. 中国科学: 地球科学, 2015, 45(10): 1597-1608. |
17 | Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 2019, 46(5): 995-1020. |
15 | 张建新, 廖飞佳, 张磊. 中天山北坡蒸发对降水产水能力影响的评估[C]//中国气象学会2006年年会“人工影响天气作业技术专题研讨会”分会场论文集. 北京: 中国气象学会, 2006: 21-23.] |
17 | 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 995-1020. |
16 | Ye Wei. Characteristics of physical environment and conditions of loess formation in Yili area, Xinjiang[J]. Arid Land Geography, 1999, 22(3): 9-16. |
18 | Liu Shaofeng, Zhang Guowei, Feng Pan, et al. Timing of Xunhua and Guide Basin development and growth of the northeastern Tibetan Plateau, China[J]. Basin Research, 2013, 25(1): 74-96. |
16 | 叶玮. 新疆伊犁地区自然环境特点与黄土形成条件[J]. 干旱区地理, 1999, 22(3): 9-16. |
17 | Jia Jia, Chen Jianhui, Wang Zhiyuan, et al. No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: records from Ili loess, Xinjiang[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572: 110407. |
19 | Zattin M, Wang Xiuxi. Exhumation of the Western Qinling Mountain range and the building of the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2019, 177: 307-313. |
20 | Pan Baotian, Gao Hongshan, Li Bingyuan, et al. Step-like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 50-57. |
18 | Li Guoqiang, Wen Lijuan, Xia Dunsheng, et al. Quartz OSL and K-feldspar pIRIR dating of a loess/paleosol sequence from arid Central Asia, Tianshan Mountains, NW China[J]. Quaternary Geochronology, 2015, 28: 40-53. |
20 | 潘保田, 高红山, 李炳元, 等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究, 2004, 24(1): 50-57. |
19 | Jia Jia, Liu Hao, Gao Fuyuan, et al. Variations in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 156-161. |
21 | Zheng Jinping, Griffin W, Sun Mengru, et al. Tectonic affinity of the West Qinling terrane (central China): North China or Yangtze?[J/OL]. Tectonics, 2010, 29(2) [2021-06-10]. . |
20 | Evans M E, Heller F. Magnetism of loess/palaeosol sequences: recent developments[J]. Earth-Science Reviews, 2001, 54(1/2/3): 129-144. |
21 | Sun Youbin, He Liu, Liang Lianji, et al. Changing color of Chinese loess: geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138. |
22 | Ma Zhenhua, Li Xiaomiao, Guo Benhong, et al. Extraction and analysis of Maxianshan planation surfaces in northeastern margin of the Tibetan Plateau[J]. Acta Geographica Sinica, 2016, 71(3): 400-411. |
马振华, 李小苗, 郭本泓, 等. 青藏高原东北缘马衔山夷平面特征指标的提取与分析[J]. 地理学报, 2016, 71(3): 400-411. | |
Yang Shiling, Ding Zhongli. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles[J]. Geophysical Research Letters, 2003, 30(20): 2058. | |
23 | Hatté C, Fontugne M, Rousseau D D, et al. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian[J]. Geology, 1998, 26(7): 583-586. |
Liu Fenliang. Geomorphological evolution and valley development of the lower Jinsha River during the late Cenozoic[D]. Lanzhou: Lanzhou University, 2018. | |
刘芬良. 晚新生代金沙江下游段地貌演化与河谷发育研究[D]. 兰州: 兰州大学, 2018. | |
24 | Liu Weiguo, Yang Hong, Ning Youfeng, et al. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau[J]. Organic Geochemistry, 2007, 38(9): 1571-1579. |
Haider V L, Kropáek J, Dunkl I, et al. Identification of peneplains by multi-parameter assessment of digital elevation models[J]. Earth Surface Processes and Landforms, 2015, 40: 1477-1492. | |
25 | Deines P. The isotopic composition of reduced organic carbon[M]// Fritz P, Fontes J Ch. Handbook of environmental isotope geochemistry: the terrestrial environment A. New York: Elsevier, 1980: 339-345. |
Strobl M, Hetzel R, Niedermann S, et al. Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne[J]. Geomorphology, 2012, 153/154: 192-204. | |
26 | Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 503-537. |
Feng Jinliang, Cui Zhijiu, Zhu Liping, et al. Review on the planation surface[J]. Journal of Mountain Sciences, 2005, 23(1): 1-13. | |
27 | Lee Xinqing, Feng Zhaodong, Guo Lanlan, et al. Carbon isotope of bulk organic matter: a proxy for precipitation in the arid and semiarid Central Asia[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4010. |
28 | Rao Zhiguo, Guo Wenkang, Cao Jiantao, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review[J]. Earth-Science Reviews, 2017, 165: 110-119. |
26 | 冯金良, 崔之久, 朱立平, 等. 夷平面研究评述[J]. 山地学报, 2005, 23(1): 1-13. |
29 | Wang Qiang, Wei Haitao, Khormali F, et al. Holocene moisture variations in western arid Central Asia inferred from loess records from NE Iran[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3): e2019GC008616. |
27 | Pan Baotian, Gao Hongshan, Li Jijun. On problems of planation surface: a discussion on the planation surface in Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 2002, 22(5): 520-526. |
30 | Zong Xiulan, Dong Jibao, Cheng Peng, et al. Terrestrial mollusk records in the loess sequences from eastern Central Asia since the last deglaciation and their paleoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109890. |
27 | 潘保田, 高红山, 李吉均. 关于夷平面的科学问题: 兼论青藏高原夷平面[J]. 地理科学, 2002, 22(5): 520-526. |
28 | Wang Xiuxi. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 2017, 32(3): 234-244. |
31 | Ran Min, Feng Zhaodong. Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance[J]. Organic Geochemistry, 2014, 73: 47-55. |
28 | 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244. |
32 | Amundson R, Austin A T, Schuur E, et al. Global patterns of the isotopic composition of soil and plant nitrogen[J]. Global Biogeochemical Cycles, 2003, 17(1): 1031. |
29 | Malusà M G, Fitzgerald P G. Fission-track thermochronology and its application to geology[M]. Milan, Italy: University of Milano-Bicocca, 2018. |
33 | Zhou Lei, Song Minghua, Wang Shaoqiang, et al. Patterns of soil δ15N and total N and their relationships with environmental factors on the Qinghai-Tibetan Plateau[J]. Pedosphere, 2014, 24(2): 232-242. |
34 | Obreht I, Buggle B, Catto N, et al. The late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: environmental and climate reconstruction using grain size and stable C and N isotopes[J]. Quaternary International, 2014, 334(17): 10-19. |
30 | Wang Xiuxi, Zattin M, Li Jijun, et al. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite fission track thermochronology: implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 2011, 42(1/2): 97-110. |
31 | Chen Hong, Hu Jianmin, Wu Guoli, et al. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China[J]. Journal of Asian Earth Sciences, 2015, 114: 649-673. |
35 | Schatz A-K, Zech M, Buggle B, et al. The late Quaternary loess record of Tokaj, Hungary: reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers[J]. Quaternary International, 2011, 240(1): 52-61. |
32 | He Pengju, Wang Xiuxi, Song Chunhui, et al. Cenozoic evolution of the Western Qinling Mt. range based on thermochronologic and sedimentary records from the Wudu Basin, NE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017, 138: 484-494. |
36 | Zech R, Zech M, Marković S, et al. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, Northern Serbia[J]. Palaeoheography, Palaeoclimatology, Palaeoecology, 2013, 387: 165-175. |
37 | Wang Guo’an, Feng Xiahong, Han Jiamao, et al. Paleovegetation reconstruction using δ13C of soil organic matter[J]. Biogeosciences, 2008, 5: 1325-1337. |
33 | Wang Xiuxi, Song Chunhui, Zattin M, et al. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology[J]. Tectonophysics, 2016, 672/673: 212-227. |
38 | Wang Wei, Feng Zhaodong. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records[J]. Earth-Science Reviews, 2013, 122: 38-57. |
34 | Wang Xiuxi, Deng Lizhen, Zattin M, et al. Palaeogene growth of the northeastern Tibetan Plateau: detrital fission track and sedimentary analysis of the Lanzhou Basin, NW China[J]. Journal of Asian Earth Sciences, 2017, 147(1): 322-331. |
35 | Cui Zhijiu, Li Dewen, Wu Yongqiu, et al. The planation surfaces[J]. Chinese Science Bulletin, 1998, 43(17): 3-14. |
39 | Wu Dandan, Cao Jiantao, Jia Guodong, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464. |
40 | Gao Fuyuan, Jia Jia, Xia Dunsheng, et al. Asynchronous Holocene climate optimum across mid-latitude Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518: 206-214. |
35 | 崔之久, 李德文, 伍永秋, 等. 关于夷平面[J]. 科学通报, 1998, 43(17): 3-14. |
36 | Wang Weitao, Kirby E, Zhang Peizhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension[J]. Bulletin of the Geological Society of America, 2013, 125(3/4): 377-400. |
41 | Sun Huanyu, Song Yougui, Chen Xiuling, et al. Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109731. |
42 | Duan Futao, An Chengbang, Wang Wei, et al. Dating of a late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental significance[J]. Quaternary International, 2020, 544: 104-112. |
37 | Lin Xiubin, Chen Hanlin, Wyrwoll K-H, et al. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: integrated constraint from stratigraphy and thermochronology[J]. The Journal of Geology, 2011, 119: 372-393. |
38 | Wu Jiabin, Guo Licheng, Xiong Shangfa, et al. New magnetic constraints on early-middle Miocene uplift of the Liupan Shan, northeastern margin of the Tibetan Plateau[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 1340-1357. |
43 | Chen Fahu, Chen Jianhui, Huang Wei, et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. |
39 | Wang Xiuxi, Li Jijun, Song Chunhui, et al. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui Basin, northeastern margin of Tibetan Plateau[J]. International Journal of Earth Sciences, 2011, 101(5): 1345-1356. |
44 | Dalton A S, Margold M, Stokes C R, et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex[J]. Quaternary Science Reviews, 2020, 234: 106223. |
45 | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. |
40 | Qi Bangshen, Hu Daogong, Yang Xiaoxiao, et al. Paleoelevation of the Qilian Mountain inferred from carbon and oxygen isotopes of Cenozoic strata[J]. Acta Geoscientica Sinica, 2015, 36(3): 323-332. |
46 | Long Hao, Shen Ji, Chen Jianhui, et al. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32. |
41 | Fang Xiaomin, Garzione C, Van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. |
47 | Zhang Xiaojian, Jin Liya, Chen Jie, et al. Detecting the relationship between moisture changes in arid Central Asia and East Asia during the Holocene by model-proxy comparison[J]. Quaternary Science Reviews, 2017, 176: 36-50. |
42 | Fang Xiaomin, Wang Jiuyi, Zhang Weilin, et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global and Planetary Change, 2016, 145: 78-97. |
43 | Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet-Detrital AFT records from Linxia Basin[J]. Science in China: Series D, 2003, 46(): 266-275. |
44 | Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2018, 30(3): 544-563. |
45 | Lease R O, Burbank D W, Hough B, et al. Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua Basin magnetostratigraphy and provenance[J]. Geological Society of America Bulletin, 2012, 124(5/6): 657-677. |
46 | Chen Chihao, Bai Yan, Fang Xiaomin, et al. A late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion[J]. Geophysical Research Letters, 2019, 46: 8375-8386. |
47 | Yang Rongsheng, Fang Xiaomin, Meng Qingquan, et al. Paleomagnetic constraints on the middle Miocene-early Pliocene stratigraphy in the Xining Basin, NE Tibetan Plateau, and the geologic implications[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3741-3757. |
48 | Zhang Jin, Wang Yannan, Zhang Beihang, et al. Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China[J]. Journal of Asian Earth Sciences, 2015, 97: 10-23. |
49 | Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin[J]. Geology, 2008, 37(6): 987-990. |
50 | Dai Shuang, Fang Xiaomin, Dupont-Nivet G, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: tectonic implications for the northeastern Tibetan Plateau[J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11) [2021-06-10]. . |
51 | Hui Zhengchuang, Li Xiaomiao, Ma Zhenhua, et al. Miocene pollen assemblages from the Zeku Basin, northeastern Tibetan Plateau, and their palaeoecological and palaeoaltimetric implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 419-432. |
52 | Qi Bangshen, Hu Daogong, Yang Xiaoxiao, et al. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene[J]. Journal of Asian Earth Sciences, 2016, 124: 28-41. |
53 | Liu Yongjiang, Genser J, Neubauer F, et al. 40Ar/39Ar mineral ages from basement rocks in the eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 2005, 398(3/4): 199-224. |
54 | Lu Haijian, Wang E, Shi Xuhua, et al. Cenozoic tectonic evolution of the Elashan Range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses[J]. Tectonophysics, 2012, 580: 150-161. |
55 | Yuan Wanming, Dong Jinquan, Wang Shicheng, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27(6): 847-856. |
56 | Tian Pengfei, Yuan Wanming, Yang Xiaoyong, et al. Multi-stage tectonic events of the eastern Kunlun Mountains, northern Tibetan Plateau constrained by fission track thermochronology[J/OL]. Journal of Asian Earth Sciences, 2020, 198 [2021-06-10]. . |
57 | Duvall A R, Clark M K, Kirby E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32(5): 1190-1211. |
58 | Yan Maodu, Vandervoo R, Fang Xiaomin, et al. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 234-247. |
59 | Li Jijun, Fang Xiaomin, Song Chunhui, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. |
60 | Royden L H, Burchfiel B C, Hilst R. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. |
61 | Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J/OL]. Science, 2019, 363(6430) [2021-06-10]. . |
62 | Deng Tao, Wang Xiaoming, Wu Feixiang, et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. Global and Planetary Change, 2019, 174: 58-69. |
63 | Spicer R A, Su Tao, Valdes P J, et al. Why the ‘Uplift of the Tibetan Plateau’ is a myth[J]. National Science Review, 2020, 8(1): 1-19. |
64 | Miao Yunfa, Wu Fuli, Herrmann M, et al. Late early Oligocene East Asian summer monsoon in the NE Tibetan Plateau: evidence from a palynological record from the Lanzhou Basin, China[J]. Journal of Asian Earth Sciences, 2013, 75: 46-57. |
65 | Song Bowen, Spicer R A, Zhang Kexin, et al. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene[J/OL]. Earth and Planetary Science Letters, 2020, 537 [2021-06-10]. . |
66 | Zhuang Guangsheng, Johnstone S A, Hourigan J, et al. Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers[J]. Gondwana Research, 2018, 58: 195-210. |
[1] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[2] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[3] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[4] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[5] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[6] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[7] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[8] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[9] | 刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700. |
[10] | 张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713. |
[11] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
[12] | 宋艾,杨久成,丁文娜,刘佳. 青藏高原高寒区生物地理学研究进展[J]. 冰川冻土, 2021, 43(3): 786-797. |
[13] | 沈曼丽,张军,惠争闯. 兰州西津黄土色度指标记录的第四纪气候演化[J]. 冰川冻土, 2021, 43(3): 809-817. |
[14] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[15] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000