冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 827-840.doi: 10.7522/j.issn.1000-0240.2021.0024
马振华1,2(),彭廷江2(
),李小苗1,2,冯展涛2,郭本泓2,李孟2,张军2,宋春晖3
收稿日期:
2021-05-02
修回日期:
2021-05-29
出版日期:
2021-06-30
发布日期:
2021-07-29
通讯作者:
彭廷江
E-mail:geomazhh@163.com;pengtj@lzu.edu.cn
作者简介:
马振华,讲师,主要从事层状地貌及水系演化研究. E-mail: 基金资助:
Zhenhua MA1,2(),Tingjiang PENG2(
),Xiaomiao LI1,2,Zhantao FENG2,Benhong GUO2,Meng LI2,Jun ZHANG2,Chunhui SONG3
Received:
2021-05-02
Revised:
2021-05-29
Online:
2021-06-30
Published:
2021-07-29
Contact:
Tingjiang PENG
E-mail:geomazhh@163.com;pengtj@lzu.edu.cn
摘要:
陇中盆地及周边地区是青藏高原向北东方向扩展的最前缘部位,其地貌演化过程的研究对于深入理解高原的隆升与扩展过程具有重要意义。鉴于夷平面在探讨高原隆升年代、幅度和过程方面的可靠性,首先总结陇中盆地及周边地区夷平面相关研究的前期成果,并结合最新年代数据,确定了不同区域主夷平面的发育和解体年代;再利用古河道拟合等方法定量评估了相关夷平面的隆升量;最后探讨了主夷平面的性质及其隆升过程。研究发现,陇中盆地及周边的地区的高海拔低起伏地貌面是被抬高的先存夷平面;不同区域主夷平面的发育与解体时间整体同步,它们自晚渐新世开始发育,并于晚中新世8~6 Ma左右解体;模拟结果表明,美武高原主夷平面自晚中新世以来相对陇中盆地隆升了约1 400~1 600 m,并且早更新世以来的隆升速率明显大于晚中新世-早更新世时期。
中图分类号:
马振华,彭廷江,李小苗,冯展涛,郭本泓,李孟,张军,宋春晖. 陇中盆地及周边地区主夷平面演化与高原隆升[J]. 冰川冻土, 2021, 43(3): 827-840.
Zhenhua MA,Tingjiang PENG,Xiaomiao LI,Zhantao FENG,Benhong GUO,Meng LI,Jun ZHANG,Chunhui SONG. Evolution of the main planation surfaces in the Longzhong Basin and its surrounding areas and its significance for the uplift of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 827-840.
1 | Li Jijun, Wen Shixuan, Zhang Qingsong, et al. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau[J]. Scientia Sinica, 1979, 6: 608-616. |
李吉均, 文世宣, 张青松, 等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学, 1979, 6: 608-616. | |
2 | Chen Fahu, Fu Bojie, Xia Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science in China: Series D Earth Sciences, 2019, 62: 1665-1701. |
陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学: D辑 地球科学, 2019, 49(11): 1659-1696. | |
3 | Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. |
4 | Wang Weitao, Zhang Peizhen, Wang Zhicai, et al. Multiproxy records in middle-late Miocene sediments from the Wushan Basin: implications for climate change and tectonic deformation in the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 2020, 133: 149-158. |
5 | Deng Tao, Wu Feixiang, Zhou Zhekun, et al. Tibetan plateau: an evolutionary junction for the history of modern biodiversity[J]. Science China Earth Sciences, 2020, 63(2): 172-187. |
6 | Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
7 | Wang Chenshan, Zhao Xixi, Liu Zhifei, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992. |
8 | Fang Xiaomin, Dupont-Nivet G, Wang Chengshan, et al. Revised chronology of central Tibet uplift (Lunpola Basin) [J]. Science Advances, 2020, 6(50): 7298. |
9 | Spicer R A, Su T, Valdes P J, et al. Why ‘the uplift of the Tibetan Plateau’ is a myth[J]. National Science Review, 2021, 8(1): nwaa091. |
10 | Pan Baotian, Gao Hongshan, Li Jijun. On problems of planation surface-a discussion on the planation surface in Qinghai-Xizang plateau[J]. Scientia Geographica Sinica, 2002, 22(5): 520-526. |
潘保田, 高红山, 李吉均. 关于夷平面的科学问题——兼论青藏高原夷平面[J]. 地理科学, 2002, 22(5): 520-526. | |
11 | Xiong Jianguo, Li Youli, Zhang Peizhen. New advances in planation surface research[J]. Advances in Earth Science, 2020, 35(4): 378-388. |
熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388. | |
12 | Jolivet M, Ritz J F, Vassallo R, et al. Mongolian summits: an uplifted, flat, old but still preserved erosion surface[J]. Geology, 2007, 35: 871-874. |
13 | Picart C, Dauteuil O, Pickford M, et al. Cenozoic deformation of the South African Plateau, Namibia: insights from planation surfaces[J]. Geomorphology, 2020, 350: 106922. |
14 | Ma Zhenhua, Li Xiaomiao, Peng Tingjiang, et al. Landscape evolution of the Dabanshan planation surface: implications for uplift of the eastern tip of the Qilian Mountains since the Late Miocene[J]. Geomorphology, 2020, 356: 107091. |
15 | Farines B, Calvet M, Gunnell Y. The summit erosion surfaces of the inner Betic Cordillera: their value as tools for reconstructing the chronology of topographic growth in southern Spain[J]. Geomorphology, 2015, 233: 92-111. |
16 | Lin Wenying. The physiographic stages around the Labrang in Gansu Province[J]. Xinxibei Monthly, 1936: 25-35. |
林文英. 甘肃拉卜楞附近之地文[J]. 方志, 1936: 25-35. | |
17 | Young C C, Bien M N. Cenozoic geology of the Kaolan-Yungteng area of Central Kansu[J]. Bulletin of the Geological Society of China, 1937, 16: 221-260. |
18 | Earth Science Division, Chinese Academy of Sciences. The records of the first symposium about neotectonism in Chinese Academy of Sciences[C]. Beijing: Science Press, 1957: 8-44. |
中国科学院地学部. 中国科学院第一次新构造运动座谈会发言记录[C]. 北京: 科学出版社, 1957: 8-44. | |
19 | Wang Deji. Pediment in the eastern part of the Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 1983, 19(3): 108-114. |
王德基. 祁连山东段的古剥蚀面[J]. 兰州大学学报(自然科学版), 1983, 19(3): 108-114. | |
20 | Li Jijun, Fang Xiaomin, Ma Haizhou, et al. The evolution of the upper reaches of the Yellow River and the uplift of the Qinghai-Tibet Plateau in the Late Cenozoic[J]. Science in China: Series D Earth Sciences, 1996, 26(4): 316-322. |
李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学: D辑 地球科学, 1996, 26(4): 316-322. | |
21 | Li Jijun, Zhang Jun, Song Chuihui, et al. Miocene Bahean stratigraphy in the Longzhong Basin, northern central China and its implications in environmental change[J]. Science in China: Series D Earth Sciences, 2006, 49(12): 1270-1279. |
22 | Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang Movement: the major uplift of the Qinghai-Tibetan Plateau[J]. Science in China: Series D Earth Sciences, 2015, 58: 2113-2122. |
23 | Li Jijun, Ma Zhenhua, Li Xiaomiao, et al. Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan plateau[J]. Geomorphology, 2017, 295: 393-405. |
24 | Wang Yixiang, Liu Yong, Pan Baotian. A preliminary approach on the generation, display and analysis of digital terrain model of planation surface: taking Meiwu Plateau as an example[J]. Remote Sensing Technology and Application, 1999, 14(1): 59-64. |
王义祥, 刘勇, 潘保田. 夷平面数字地形模型的生成、显示与分析初探——以美武高原为例[J]. 遥感技术与应用, 1999, 14(1): 59-64. | |
25 | Ma Zhenhua, Li Xiaomiao, Guo Benhong, et al. Extraction and analysis of Maxianshan planation surfaces in northeastern margin of the Tibetan Plateau[J]. Acta Geographica Sinica, 2016, 71(3): 400-411. |
马振华, 李小苗, 郭本泓, 等. 青藏高原东北缘马衔山夷平面特征指标的提取与分析[J]. 地理学报, 2016, 71(3): 400-411. | |
26 | Li Jijun. Uplift of the Tibetan plateau and Asia environmental evolution[M]. Beijing: Science Press, 2006: 65-70. |
李吉均. 青藏高原隆升与亚洲环境演变[M]. 北京: 科学出版社, 2006: 65-70. | |
27 | Ma Zhenhua. The planation surfaces and Late Cenozoic geomorphological evolution in Maxianshan Mountains, NE Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2016. |
马振华. 青藏高原东北缘马衔山地区夷平面及其晚新生代地貌演化[D]. 兰州: 兰州大学, 2016. | |
28 | Ma Zhenhua. Layered landforms and drainage evolution in the eastern Qilian Mountains since Late Miocene[D]. Lanzhou: Lanzhou University, 2020. |
马振华. 晚中新世以来祁连山东段层状地貌及水系演化[D]. 兰州: 兰州大学, 2020. | |
29 | Chen Hongkai, Li Jijun. The discovery of Tertiary karst landforms in Bailongjiang River basin and its meaning[J]. Yunnan Geographic Environment Research, 1991(2): 49-54. |
陈洪凯, 李吉均. 白龙江流域第三纪古喀斯特地貌的发现及其意义[J]. 云南地理环境研究, 1991(2): 49-54. | |
30 | He Chicheng, Zhang Yueqiao, Li Jian, et al. Kinematics of the Maxianshan Fault, northeastern Tibetan plateau: the history of Cretaceous-Cenozoic sedimentary and tectonic deformation[J]. Acta Geoscientica Sinica, 2019, 40(4): 563-606. |
贺赤诚, 张岳桥, 李建, 等. 青藏高原东北隅马衔山断裂带及周缘白垩纪-新生代沉积和构造变形历史[J]. 地球学报, 2019, 40(4): 563-606. | |
31 | Cheng Hai, Zhang Haiwei, Zhao Jingyao, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science in China: Series D Earth Sciences, 2019, 62: 1489-1513. |
程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学: D辑 地球科学, 2019, 49(10): 1565-1589. | |
32 | Woodhead J, Hellstrom J, Maas R, et al. U-Pb geochronology of speleothems by MC-ICPMS[J]. Quaternary Geochronology, 2006, 1(3): 208-221. |
33 | Nicholson S, Pike A, Hosfield R, et al. Pluvial periods in Southern Arabia over the last 1.1 million-years[J]. Quaternary Science Reviews, 2020, 229: 106112. |
34 | Herries A, Martin J, Leece A, et al. Contemporaneity of Australopithecus, Paranthropus, and early Homo erectus in South Africa[J]. Science, 2020, 368(6486): eaaw7293. |
35 | Lin Junshu, Zhang Yaoguang. Progress of karst speleology study in China[C]//Karst landforms and caves. Beijing: Science Press, 1985: 164-172. [ |
林钧枢, 张耀光. 我国喀斯特洞穴研究的进展[C]//喀斯特地貌与洞穴. 北京: 科学出版社, 1985: 164-172.] | |
36 | Columbu A, De Waele J, Forti P, et al. Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region[J]. Geology, 2015, 43(6): 539-542. |
37 | Calvet M, Gunnell Y, Braucher R, et al. Cave levels as proxies for measuring post-orogenic uplift: Evidence from cosmogenic dating of alluvium-filled caves in the French Pyrenees[J]. Geomorphology, 2015, 246: 617-633. |
38 | Xue Xiangxu, Zhang Yunxiang, Yue Leping. Paleoenvironments indicated by the fossil mammalian assemblages from red clay-loess sequence in the Chinese Loess Plateau since8.0 Ma BP[J]. Science in China: Series D Earth Sciences, 2006, 36(4): 359-369. |
薛祥煦, 张云翔, 岳乐平. 从哺乳动物化石看中国黄土高原红黏土-黄土系列的气候环境及演变[J]. 中国科学: D辑 地球科学, 2006, 36(4): 359-369. | |
39 | Yu Xuehui. Cenozoic Potassic alkaline ultrabasic volcanic rocks and its genesis in Lixian-Dangchang area, Gansu Province[J]. Tethyan Geology, 1994(18): 114-129. |
喻学惠. 甘肃礼县-宕昌地区新生代钾质碱性超基性火山岩的特征及成因[J]. 特提斯地质, 1994(18): 114-129. | |
40 |
Pei Xianzhi. Reports of 1:250000 regional geological survey map (I48C002003) of Tianshui, Gansu Province (revision survey)[DS]. Beijing: National Geological Data Center, 2004. DOI:10.35080/n01.c.122186.
doi: 10.35080/n01.c.122186 |
裴先治. 天水市幅I48C002003 1/25万区域地质调查(修测)成果报告[DS]. 北京: 全国地质资料馆, 2004. DOI:10.35080/n01.c.122186.
doi: 10.35080/n01.c.122186 |
|
41 | Zhang Yunxiang, Xue Xiangxu. Taphonomy of Longjiagou Hipparionine fauna (Turolian, Miocene) Wudu county, Gansu province, China[M]. Beijing: Geological Publishing House, 1995. |
张云翔, 薛祥煦. 甘肃武都龙家沟三趾马动物群埋藏学[M]. 北京: 地质出版社, 1995. | |
42 | Schoenbohm L M, Whipple K X, Burchfiel B C, et al. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China[J]. Geological Society of America Bulletin, 2004, 116: 895-909. |
43 | Zhang Huiping, Kirby E, Pitlick J, et al. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 2017, 122: 546-572. |
44 | Shi Xiaohui, Yang Zhao, Dong Yunpeng, et al. Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: evidence for the late Cenozoic eastward growth of the Tibetan Plateau[J]. Geomorphology, 2020, 353: 107031. |
45 | Howard A D, Dietrich W E, Seidl M A. Modeling fluvial erosion on regional to continental scales[J]. Journal of Geophysical Research: Solid Earth, 1994, 99: 13971-13986. |
46 | Whipple K X, Kirby E, Brocklehurst S H. Geomorphic limits to climate-induced increases in topographic relief[J]. Nature, 1999, 401: 39-43. |
47 | Hack J T. Studies of longitudinal stream profiles in Virginia and Maryland[M]. US Government Printing Office, 1957. |
48 | Howard A D, Kerby G. Channel changes in badlands[J]. Geological Society of America Bulletin, 1983, 94: 739-752. |
49 | Perron J T, Royden L. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 2013, 38: 570-576. |
50 | Davis W M. The geographical cycle[J]. Geographical Journal, 1899, 14(A): 481-503. |
51 | Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research, 2006, 111: F03002. |
52 | Yang Rong, Willett S D, Goren L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520: 526-529. |
53 | Liu-Zeng Jing, Tapponnier, P, Gaudemer Y. et al. Quantifying landscape differences across the Tibetan plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research, 2008, 113: F04018. |
54 | Adams B A, Whipple K X, Hodges K V, et al. In situ development of high-elevation, low-relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan[J]. Journal of Geophysical Research: Earth Surface, 2016, 121: 294-319. |
55 | Zhang Huiping, Oskin M E, Liu-Zeng Jing, et al. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185. |
56 | Thornbury W D. Principles of geomorphology[M]. New York: John Wiley & Sons Inc., 1954. |
57 | Whipple K X, Dibiase R A, Ouimet W B, et al. Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms[J]. Geology, 2017, 45(1): 91-94. |
58 | Cao Licheng, Shao Lei, Qiao Peijun, et al. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 496: 120-131. |
59 | Peng Tingjiang. The biomarker perspective on Neogene environmental evolution in the Tianshui Basin, NE Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2012. |
彭廷江. 天水盆地新近纪沉积物生物标志化合物与环境演变[D]. 兰州: 兰州大学, 2012. | |
60 | Zhang Weilin, Appel E, Wang Jiuyi, et al. New paleomagnetic constraints for Platybelodon and Hipparion faunas in the Linxia Basin and their ecological environmental implications[J]. Global and Planetary Change, 2019, 176: 71-83. |
61 | Chen Chihao, Bai Yan, Fang Xiaomin, et al. A late miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion[J]. Geophysical Research Letters, 2019, 46(14): 8375-8386. |
62 | Lavé J. Earth science: Landscape inversion by stream piracy[J]. Nature, 2015, 520(7548): 442. |
63 | Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20. | |
64 | Wang Weitao, Kirby E, Zhang Peizhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. Bulletin of the Geological Society of America, 2013, 125(3/4): 377-400. |
65 | Liu Shanpin. Spatio-temporal evolution of northeastern Tibetan plateau: Integrated provenance study of the Guide, Lanzhou and Wushan-Tianshui basins[D]. Lanzhou: Lanzhou University, 2015. |
刘善品. 青藏高原东北缘新生代隆升的时空演化: 贵德、兰州、武山-天水盆地的综合物源研究[D]. 兰州: 兰州大学, 2015. | |
66 | Wang Weitao, Zhang Peizhen, Liu Caicai, et al. Pulsed growth of the West Qinling at ~30 Ma in northeastern Tibet: evidence from Lanzhou Basin magnetostratigraphy and provenance[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7754-7774. |
67 | Liu Shanpin, Li Jijun, Daniel F, et al. Reappraisal of Miocene eolian deposition in Tianshui Basin, China, based on an investigation of stratigraphy and provenance[J]. Geological Society of America Bulletin, 2019, 131(7/8): 1312-1332. |
68 | Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2018, 30: 544-563. |
69 | Zhang Jin, Wang Yannan, Zhang Beihang, et al. Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai-Tibetan Plateau[J]. Basin Research, 2016, 28(2): 159-182. |
70 | Fang Xiaomin, Wang Jiuyi, Zhang Weilin, et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global and Planetary Change, 2016, 145: 78-97. |
71 | Fang Xiaomin, Garzione C, Van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. |
72 | Yang Rongsheng, Fang Xiaomin, Meng Qingquan, et al. Paleomagnetic constraints on the Middle Miocene-Early Pliocene Stratigraphy in the Xining Basin, NE Tibetan Plateau, and the geologic implications[J]. Geochemistry Geophysics Geosystems, 2017, 18: 3741-3757. |
73 | Wang Zhicai, Zhang Peizhen, Garzione C N, et al. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China: implications for middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44: 189-202. |
74 | Wang Zhicai. Cenozoic tectonic deformation and evolution of the northeastern margin of the Tibetan Plateau: a case study of Longxi-Wushan region[D]. Beijing: Institute of Geology, China Earthquake Administration, 2004. |
王志才. 青藏高原东北缘新生代以来的构造变形特征与时空演化: 以陇西-武山地区为例[D]. 北京: 中国地震局地质研究所, 2004 | |
75 | Zhang Jun. Formation cause of the Neogene sediments in Tianshui-Qin’an area in Longzhong Basion and the paleoenvironmental change[D]. Lanzhou: Lanzhou University, 2008. |
张军. 陇中盆地秦安-天水地区新近纪沉积物成因与环境变化[D]. 兰州: 兰州大学, 2008. |
[1] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
[2] | 宋艾,杨久成,丁文娜,刘佳. 青藏高原高寒区生物地理学研究进展[J]. 冰川冻土, 2021, 43(3): 786-797. |
[3] | 郑本兴, 屈建军, 沈永平, 牛清河, 俞祁浩, 赵爱国. 论库姆塔格沙漠羽毛状断裂的成因 ——“八一泉运动”及其与青藏高原隆升、 气候变化的关系[J]. 冰川冻土, 2012, 34(3): 591-596. |
[4] | 周 强;a;李万伦;陈伟涛;王永江. 青藏高原天然气水合物形成的空间耦合关系探讨[J]. 冰川冻土, 2011, 33(5): 1139-1145. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000