冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 841-852.doi: 10.7522/j.issn.1000-0240.2021.0025
收稿日期:
2021-05-29
修回日期:
2021-06-10
出版日期:
2021-06-30
发布日期:
2021-07-29
作者简介:
王修喜,副教授,主要从事构造地貌演化与低温热年代学研究. E-mail:基金资助:
Xiuxi WANG(),Yanbo ZHANG,Hong WANG,Huiming LIU,Bozhong PANG,Lingbing WANG
Received:
2021-05-29
Revised:
2021-06-10
Online:
2021-06-30
Published:
2021-07-29
摘要:
青藏高原多圈层相互作用研究一直是国际地学界研究的热点和难点,而高原各主要块体精确的内外耦合作用记录成为取得突破的关键。西秦岭地处高原东北向生长的关键节点部位,夷平面保留完好,具典型性,是研究区域内外力耦合作用的良好载体。在野外考察的基础上,通过地貌因子提取法和目视解译法,对该区进行定量解译分析发现,山顶面与主夷平面分别残留于高山顶部和普遍分布在西秦岭山脉主体部分,夷平面东北向倾斜暗示高原在该区抬升幅度由内部向边缘逐渐减小。梳理和分析该区有关低温热年代学和构造变形证据,获得该区新生代以来造山期次主要发生在66~47 Ma、38~22 Ma、≤13 Ma,期间的47~38 Ma和22~13 Ma相对平静期为准平原过程。初步推断现存的山顶面在始新世中期(约47 Ma)开始夷平,主夷平面的发育始于中新世早期(约22 Ma),约13 Ma准平原形成。青藏运动导致这两级地貌面隆升到现代高度,最终奠定现代地貌格局。
中图分类号:
王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852.
Xiuxi WANG,Yanbo ZHANG,Hong WANG,Huiming LIU,Bozhong PANG,Lingbing WANG. Formation characters and ages of the planation surfaces on West Qinling during Cenozoic era and their significances[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 841-852.
1 | Clark M K, Farley K A, Zheng Dewen, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88. |
2 | Yin An. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 2010, 488(1/2/3/4): 293-325. |
3 | Zhang Guowei, Guo Anlin, Yao Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(3): 23-32. |
张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23-32. | |
4 | Wang Xianyan, Lu Huayu, Vandenberghe J, et al. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment[J]. Global and Planetary Change, 2012, 88/89: 10-19. |
5 | Fang Xiaomin, Fang Yahui, Zan Jinbo, et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews, 2019, 190: 460-485. |
6 | Wang Weitao, Zheng Dewen, Li Chaopeng, et al. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4): e2019TC005705. |
7 | Li Jinjun. Tibetan Plateau uplift and the climate changes of Asia[M]. Beijing: Science Press, 2006. |
李吉均. 青藏高原隆升与亚洲环境演变[M]. 北京: 科学出版社, 2006. | |
8 | Duvall A R, Clark M K, van der Pluijm B, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 520-526. |
9 | Guo Jinjing, Wang Kaixuan, Han Wenfeng, et al. Cenozoic kinematic history of the Lintan-Minxian-Tanchang Fault in West Qinling and its dynamic process[J]. Northwestern Geology, 2018, 51(3): 80-92. |
郭进京, 王凯旋, 韩文峰, 等. 西秦岭临潭-岷县-宕昌断裂带新生代运动学历史及动力学分析[J]. 西北地质, 2018, 51(3): 80-92. | |
10 | Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 2006, 118(5/6): 651-671. |
11 | Zheng Dewen, Zhang Peizhen, Wan Jinlin, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248: 198-208. |
12 | Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4): 359-362. |
13 | Clark M K, Royden L H, Whipple K X, et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 2006, 111: F03002. |
14 | van der Beek P, Melle J V, Guillot S, et al. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya[J]. Nature Geoscience, 2009, 2(5): 364-368. |
15 | Hetzel R, Dunkl I, Haider V, et al. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2013, 41(9): 297-298. |
16 | Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang Movement: the major uplift of the Qinghai-Tibetan Plateau[J]. Science China: Earth Sciences, 2015, 45(10): 1597-1608. |
李吉均, 周尚哲, 赵志军, 等. 论青藏运动主幕[J]. 中国科学: 地球科学, 2015, 45(10): 1597-1608. | |
17 | Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, et al. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 2019, 46(5): 995-1020. |
陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 995-1020. | |
18 | Liu Shaofeng, Zhang Guowei, Feng Pan, et al. Timing of Xunhua and Guide Basin development and growth of the northeastern Tibetan Plateau, China[J]. Basin Research, 2013, 25(1): 74-96. |
19 | Zattin M, Wang Xiuxi. Exhumation of the Western Qinling Mountain range and the building of the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2019, 177: 307-313. |
20 | Pan Baotian, Gao Hongshan, Li Bingyuan, et al. Step-like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 50-57. |
潘保田, 高红山, 李炳元, 等. 青藏高原层状地貌与高原隆升[J]. 第四纪研究, 2004, 24(1): 50-57. | |
21 | Zheng Jinping, Griffin W, Sun Mengru, et al. Tectonic affinity of the West Qinling terrane (central China): North China or Yangtze?[J/OL]. Tectonics, 2010, 29(2) [2021-06-10]. . |
22 | Ma Zhenhua, Li Xiaomiao, Guo Benhong, et al. Extraction and analysis of Maxianshan planation surfaces in northeastern margin of the Tibetan Plateau[J]. Acta Geographica Sinica, 2016, 71(3): 400-411. |
马振华, 李小苗, 郭本泓, 等. 青藏高原东北缘马衔山夷平面特征指标的提取与分析[J]. 地理学报, 2016, 71(3): 400-411. | |
23 | Liu Fenliang. Geomorphological evolution and valley development of the lower Jinsha River during the late Cenozoic[D]. Lanzhou: Lanzhou University, 2018. |
刘芬良. 晚新生代金沙江下游段地貌演化与河谷发育研究[D]. 兰州: 兰州大学, 2018. | |
24 | Haider V L, Kropáek J, Dunkl I, et al. Identification of peneplains by multi-parameter assessment of digital elevation models[J]. Earth Surface Processes and Landforms, 2015, 40: 1477-1492. |
25 | Strobl M, Hetzel R, Niedermann S, et al. Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne[J]. Geomorphology, 2012, 153/154: 192-204. |
26 | Feng Jinliang, Cui Zhijiu, Zhu Liping, et al. Review on the planation surface[J]. Journal of Mountain Sciences, 2005, 23(1): 1-13. |
冯金良, 崔之久, 朱立平, 等. 夷平面研究评述[J]. 山地学报, 2005, 23(1): 1-13. | |
27 | Pan Baotian, Gao Hongshan, Li Jijun. On problems of planation surface: a discussion on the planation surface in Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 2002, 22(5): 520-526. |
潘保田, 高红山, 李吉均. 关于夷平面的科学问题: 兼论青藏高原夷平面[J]. 地理科学, 2002, 22(5): 520-526. | |
28 | Wang Xiuxi. Applications of low temperature thermochronology in the tectonogeomorphology evolution of the Tibetan Plateau[J]. Advances in Earth Science, 2017, 32(3): 234-244. |
王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244. | |
29 | Malusà M G, Fitzgerald P G. Fission-track thermochronology and its application to geology[M]. Milan, Italy: University of Milano-Bicocca, 2018. |
30 | Wang Xiuxi, Zattin M, Li Jijun, et al. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite fission track thermochronology: implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 2011, 42(1/2): 97-110. |
31 | Chen Hong, Hu Jianmin, Wu Guoli, et al. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China[J]. Journal of Asian Earth Sciences, 2015, 114: 649-673. |
32 | He Pengju, Wang Xiuxi, Song Chunhui, et al. Cenozoic evolution of the Western Qinling Mt. range based on thermochronologic and sedimentary records from the Wudu Basin, NE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2017, 138: 484-494. |
33 | Wang Xiuxi, Song Chunhui, Zattin M, et al. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology[J]. Tectonophysics, 2016, 672/673: 212-227. |
34 | Wang Xiuxi, Deng Lizhen, Zattin M, et al. Palaeogene growth of the northeastern Tibetan Plateau: detrital fission track and sedimentary analysis of the Lanzhou Basin, NW China[J]. Journal of Asian Earth Sciences, 2017, 147(1): 322-331. |
35 | Cui Zhijiu, Li Dewen, Wu Yongqiu, et al. The planation surfaces[J]. Chinese Science Bulletin, 1998, 43(17): 3-14. |
崔之久, 李德文, 伍永秋, 等. 关于夷平面[J]. 科学通报, 1998, 43(17): 3-14. | |
36 | Wang Weitao, Kirby E, Zhang Peizhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension[J]. Bulletin of the Geological Society of America, 2013, 125(3/4): 377-400. |
37 | Lin Xiubin, Chen Hanlin, Wyrwoll K-H, et al. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: integrated constraint from stratigraphy and thermochronology[J]. The Journal of Geology, 2011, 119: 372-393. |
38 | Wu Jiabin, Guo Licheng, Xiong Shangfa, et al. New magnetic constraints on early-middle Miocene uplift of the Liupan Shan, northeastern margin of the Tibetan Plateau[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 1340-1357. |
39 | Wang Xiuxi, Li Jijun, Song Chunhui, et al. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui Basin, northeastern margin of Tibetan Plateau[J]. International Journal of Earth Sciences, 2011, 101(5): 1345-1356. |
40 | Qi Bangshen, Hu Daogong, Yang Xiaoxiao, et al. Paleoelevation of the Qilian Mountain inferred from carbon and oxygen isotopes of Cenozoic strata[J]. Acta Geoscientica Sinica, 2015, 36(3): 323-332. |
41 | Fang Xiaomin, Garzione C, Van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. |
42 | Fang Xiaomin, Wang Jiuyi, Zhang Weilin, et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global and Planetary Change, 2016, 145: 78-97. |
43 | Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet-Detrital AFT records from Linxia Basin[J]. Science in China: Series D, 2003, 46(): 266-275. |
44 | Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2018, 30(3): 544-563. |
45 | Lease R O, Burbank D W, Hough B, et al. Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua Basin magnetostratigraphy and provenance[J]. Geological Society of America Bulletin, 2012, 124(5/6): 657-677. |
46 | Chen Chihao, Bai Yan, Fang Xiaomin, et al. A late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion[J]. Geophysical Research Letters, 2019, 46: 8375-8386. |
47 | Yang Rongsheng, Fang Xiaomin, Meng Qingquan, et al. Paleomagnetic constraints on the middle Miocene-early Pliocene stratigraphy in the Xining Basin, NE Tibetan Plateau, and the geologic implications[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3741-3757. |
48 | Zhang Jin, Wang Yannan, Zhang Beihang, et al. Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China[J]. Journal of Asian Earth Sciences, 2015, 97: 10-23. |
49 | Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin[J]. Geology, 2008, 37(6): 987-990. |
50 | Dai Shuang, Fang Xiaomin, Dupont-Nivet G, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: tectonic implications for the northeastern Tibetan Plateau[J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11) [2021-06-10]. . |
51 | Hui Zhengchuang, Li Xiaomiao, Ma Zhenhua, et al. Miocene pollen assemblages from the Zeku Basin, northeastern Tibetan Plateau, and their palaeoecological and palaeoaltimetric implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 419-432. |
52 | Qi Bangshen, Hu Daogong, Yang Xiaoxiao, et al. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene[J]. Journal of Asian Earth Sciences, 2016, 124: 28-41. |
53 | Liu Yongjiang, Genser J, Neubauer F, et al. 40Ar/39Ar mineral ages from basement rocks in the eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 2005, 398(3/4): 199-224. |
54 | Lu Haijian, Wang E, Shi Xuhua, et al. Cenozoic tectonic evolution of the Elashan Range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses[J]. Tectonophysics, 2012, 580: 150-161. |
55 | Yuan Wanming, Dong Jinquan, Wang Shicheng, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27(6): 847-856. |
56 | Tian Pengfei, Yuan Wanming, Yang Xiaoyong, et al. Multi-stage tectonic events of the eastern Kunlun Mountains, northern Tibetan Plateau constrained by fission track thermochronology[J/OL]. Journal of Asian Earth Sciences, 2020, 198 [2021-06-10]. . |
57 | Duvall A R, Clark M K, Kirby E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32(5): 1190-1211. |
58 | Yan Maodu, Vandervoo R, Fang Xiaomin, et al. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 234-247. |
59 | Li Jijun, Fang Xiaomin, Song Chunhui, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. |
60 | Royden L H, Burchfiel B C, Hilst R. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. |
61 | Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J/OL]. Science, 2019, 363(6430) [2021-06-10]. . |
62 | Deng Tao, Wang Xiaoming, Wu Feixiang, et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. Global and Planetary Change, 2019, 174: 58-69. |
63 | Spicer R A, Su Tao, Valdes P J, et al. Why the ‘Uplift of the Tibetan Plateau’ is a myth[J]. National Science Review, 2020, 8(1): 1-19. |
64 | Miao Yunfa, Wu Fuli, Herrmann M, et al. Late early Oligocene East Asian summer monsoon in the NE Tibetan Plateau: evidence from a palynological record from the Lanzhou Basin, China[J]. Journal of Asian Earth Sciences, 2013, 75: 46-57. |
65 | Song Bowen, Spicer R A, Zhang Kexin, et al. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene[J/OL]. Earth and Planetary Science Letters, 2020, 537 [2021-06-10]. . |
66 | Zhuang Guangsheng, Johnstone S A, Hourigan J, et al. Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers[J]. Gondwana Research, 2018, 58: 195-210. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[5] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[8] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[9] | 范义姣,马箫忆,刘慧,王树源,杨军怀,陈梓炫,高福元,贾佳,夏敦胜. 黄土记录的中亚干旱区东部全新世气候与环境演化[J]. 冰川冻土, 2021, 43(3): 818-826. |
[10] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
[11] | 马振华,彭廷江,李小苗,冯展涛,郭本泓,李孟,张军,宋春晖. 陇中盆地及周边地区主夷平面演化与高原隆升[J]. 冰川冻土, 2021, 43(3): 827-840. |
[12] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
[13] | 刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700. |
[14] | 张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713. |
[15] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000