冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 874-884.doi: 10.7522/j.issn.1000-0240.2021.0028
收稿日期:
2021-04-09
修回日期:
2021-05-29
出版日期:
2021-06-30
发布日期:
2021-07-29
通讯作者:
徐建中
E-mail:fenglin@lzb.ac.cn;jzxu@lzb.ac.cn
作者简介:
冯琳,讲师,主要从事雪冰化学研究. E-mail: 基金资助:
Lin FENG1,2(),Jianzhong XU2(
),Lixiang ZHAI2,3
Received:
2021-04-09
Revised:
2021-05-29
Online:
2021-06-30
Published:
2021-07-29
Contact:
Jianzhong XU
E-mail:fenglin@lzb.ac.cn;jzxu@lzb.ac.cn
摘要:
冰尘是冰川消融区表面黑色或棕色的球状聚合体,是冰川表面微生物的主要聚集区,同时含有丰富的溶解性有机质(dissolved organic matter, DOM),在冰川物质能量平衡、生物地球化学循环特别是碳循环中发挥着重要作用。在冰川消融期,受环境条件和微生物活动水平等方面的影响,冰川表面DOM的含量是动态变化的。为了研究冰尘中DOM的演化过程,于2017年7月在青藏高原东北部典型大陆性冰川老虎沟12号冰川消融区表面开展了为期18天的冰尘原位培养实验。结果显示:培养初期(第0~6天),冰尘水样中溶解性有机碳(DOC)浓度从13.41 mg?L-1显著降低到4.47 mg?L-1,培养后期(第6~18天),增加至6.71 mg?L-1;用特征紫外吸光度SUVA254分析培养期间“光-生物”演化过程对DOC吸光性的影响,结果表明:SUVA254的值先显著降低后显著升高,表明长时间的光照和微生物作用导致DOC浓度增加的同时,具有光吸收作用的化合物含量也显著增加。利用傅立叶离子回旋共振质谱分析DOM的分子组分发现,整个培养过程中(第0~18天),DOM中多肽类和脂类分子含量明显减少,不饱和烃类、芳烃类以及多环芳烃类化合物含量增加。分析第0天,第6天,第9天和第18天四个培养时段特有DOM分子组成的变化发现,“光-生物”演化过程使得冰尘中DOM的组成不断由脂类和多肽类向不饱和烃类、芳烃类以及多环芳烃类化合物转化。
中图分类号:
冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884.
Lin FENG,Jianzhong XU,Lixiang ZHAI. The evolution characteristics of dissolved organic matter in cryoconite during ablation season on the surface of a typical continental glacier of Tibetan Plateau: a case study at Laohugou Glacier No. 12[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 874-884.
表3
不同培养时间冰尘水样中DOM的分子数和分子组成(不同化合物)分析"
培养时间 | DOM分子数 | 脂类分子数 (百分含量) | 多肽类分子数 (百分含量) | 低氧碳比不饱和烃类分子数 (百分含量) | 高氧碳比不饱和烃类分子数 (百分含量) | 芳烃类分子数(百分含量) | 多环芳烃类分子数(百分含量) | 糖类分子数(百分含量) |
---|---|---|---|---|---|---|---|---|
D0 | 3 714 | 961(25.88%) | 747(20.11%) | 1 182(31.83%) | 673(18.12%) | 124(3.34%) | 22(0.59%) | 5(0.13%) |
D6 | 3 102 | 1 052(33.91%) | 530(17.09%) | 1 074(34.62%) | 340(10.96%) | 95(3.06%) | 5(0.16%) | 6(0.19%) |
D9 | 3 967 | 1 253(31.58%) | 513(12.93%) | 1 207(30.43%) | 778(19.60%) | 155(3.91%) | 49(1.23%) | 13(0.33%) |
D18 | 4 500 | 9 45(21.00%) | 574(12.76%) | 1 696(37.69%) | 940(20.89%) | 253(5.62%) | 72(1.60%) | 20(0.45%) |
表4
不同培养时间冰尘水样中DOM平均分子质量和分子组成(不同元素化合物)分析"
培养时间 | 平均质量 | CHO分子(百分含量) | CHON分子(百分含量) | CHONS分子(百分含量) | CHOS分子(百分含量) |
---|---|---|---|---|---|
D0 | 391.86 | 1 474(39.69%) | 1 831(49.30%) | 121(3.26%) | 288(7.75%) |
D6 | 382.87 | 1 563(50.39%) | 1 244(40.10%) | 0 (0) | 295(9.51%) |
D9 | 398.01 | 1 841(46.40%) | 1 541(38.84%) | 91(9.29%) | 495(12.47%) |
D18 | 393.25 | 1 821(40.47%) | 2 122(47.16%) | 135(3.00%) | 422(9.38%) |
1 | Yao T, Pu J, Lu A, et al. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions[J]. Arctic, Antarctic, and Alpine Research, 2007, 39(4): 642-650. |
2 | Takeuchi N, Matsuda Y, Sakai A, et al. A large amount of biogenic surface dust (cryoconite) on a glacier in the Qilian Mountains, China[J]. Bulletin of Glaciological Research, 2005, 22: 1-8. |
3 | Takeuchi N, Li Z. Characteristics of surface dust on Urumqi Glacier No. 1 in the Tien Shan mountains, China[J]. Arctic, Antarctic, and Alpine Research, 2008, 40(4): 744-750. |
4 | Xu Hui, Li Zhongqin, Takeuchi N, et al. Characteristics and form ation analysis of cryoconite granules of Yushugou Glacier[J]. Arid Land Geography, 2014, 37(3): 429-438. |
许慧, 李忠勤, Takeuchi Nozomu , 等. 天山哈密榆树沟冰川冰尘特征及其成因[J]. 干旱区地理, 2014, 37(3): 429-438. | |
5 | Takeuchi N, Kohshima S, Yoshimura Y, et al. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier Central Nepal[J]. Bulletin of Glaciological Research, 2000, 17: 51-59. |
6 | Takeuchi N, Nishiyama H, Li Z. Structure and formation process of cryoconite granules on Urumqi Glacier No. 1, Tien Shan, China[J]. Annals of Glaciology, 2010, 51(56): 9-14. |
7 | Segawa T, Matsuzaki R, Takeuchi N, et al. Bipolar dispersal of red-snow algae[J]. Nature Communications, 2018, 9(1): 1-8. |
8 | Onuma Y, Takeuchi N, Tanaka S, et al. Physically based model of the contribution of red snow algal cells to temporal changes in albedo in northwest Greenland[J]. The Cryosphere, 2020, 14(6): 2087-2101. |
9 | Hodson A, Bøggild C, Hanna E, et al. The cryoconite ecosystem on the Greenland ice sheet[J]. Annals of Glaciology, 2010, 51(56): 123-129. |
10 | Uetake J, Tanaka S, Segawa T, et al. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland[J]. FEMS Microbiology Ecology, 2016, 92(9): fiw127. |
11 | Kaczmarek Ł, Jakubowska N, Celewicz-Gołdyn S, et al. The microorganisms of cryoconite holes (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista): a review[J]. Polar Record, 2016, 52(2): 176-203. |
12 | Liu Y, Vick-Majors T J, Priscu J C, et al. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(6): 1-9. |
13 | Bagshaw E A, Tranter M, Fountain A G, et al. Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica?[J]. Arctic, Antarctic, and Alpine Research, 2013, 45(4): 440-454. |
14 | Hood E, Battin T J, Fellman J, et al. Storage and release of organic carbon from glaciers and ice sheets[J]. Nature Geoscience, 2015, 8(2): 91-96. |
15 | Antony R, Willoughby A S, Grannas A M, et al. Photo-biochemical transformation of dissolved organic matter on the surface of the coastal East Antarctic ice sheet[J]. Biogeochemistry, 2018, 141(2): 229-247. |
16 | Cory R M, McKnight D M, Chin Y P, et al. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4): 1-14. |
17 | Larson J H, Frost P C, Lodge D M, et al. Photodegradation of dissolved organic matter in forested streams of the northern Great Lakes region[J]. Journal of the North American Benthological Society, 2007, 26(3): 416-425. |
18 | Stubbins A, Spencer R G M, Chen H, et al. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010, 55(4): 1467-1477. |
19 | Bagshaw E A, Wadham J L, Tranter M, et al. Response of Antarctic cryoconite microbial communities to light[J]. FEMS Microbiology Ecology, 2016, 92(6): 1-11. |
20 | Ward C P, Nalven S G, Crump B C, et al. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration[J]. Nature Communications, 2017, 8(1): 1-8. |
21 | Leenheer J A, Croué J P. Characterizing aquatic dissolved organic matter. Environ. 466[J]. Environmental Science & Technology, 2003, 37(1): 18A. |
22 | Fellman J B, Hood E, Spencer R G M, et al. Watershed glacier coverage influences dissolved organic matter biogeochemistry in coastal watersheds of southeast Alaska[J]. Ecosystems, 2014, 17(6): 1014-1025. |
23 | Voisin D, Jaffrezo J L, Houdier S, et al. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow[J]. Journal of Geophysical Research, 2012, 117(9): 1-17. |
24 | Domeizel M, Khalil A, Prudent P. UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost[J]. Bioresource Technology, 2004, 94(2): 177-184. |
25 | Li P, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. |
26 | Barker J D, Sharp M J, Turner R J. Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system[J]. Hydrological Processes: an International Journal, 2009, 23(10): 1487-1500. |
27 | Antony R, Willoughby A S, Grannas A M, et al. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities[J]. Environmental Science & Technology, 2017, 51(8): 4328-4337. |
28 | Chen H, Stubbins A, Perdue E M, et al. Ultrahigh resolution mass spectrometric differentiation of dissolved organic matter isolated by coupled reverse osmosis-electrodialysis from various major oceanic water masses[J]. Marine Chemistry, 2014, 164: 48-59. |
29 | An Y, Xu J, Feng L, et al. Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1115-1128. |
30 | Marsh J J S, Boschi V L, Sleighter R L, et al. Characterization of dissolved organic matter from a Greenland ice core by nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Journal of Glaciology, 2013, 59(214): 225-232. |
31 | Southam A D, Payne T G, Cooper H J, et al. Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method[J]. Analytical Chemistry, 2007, 79(12): 4595-4602. |
32 | Sleighter R L, Chen H, Wozniak A S, et al. Establishing a measure of reproducibility of ultrahigh-resolution mass spectra for complex mixtures of natural organic matter[J]. Analytical Chemistry, 2012, 84(21): 9184-9191. |
33 | Feng L, Xu J, Kang S, et al. Chemical composition of microbe-derived dissolved organic matter in cryoconite in Tibetan Plateau glaciers: insights from Fourier transform ion cyclotron resonance mass spectrometry analysis[J]. Environmental Science & Technology, 2016, 50(24): 13215-13223. |
34 | Feng L, An Y, Xu J, et al. Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories[J]. Annals of Glaciology, 2018, 59(77): 31-40. |
35 | Feng L, An Y, Xu J, et al. Biochemical evolution of dissolved organic matter during snow metamorphism across the ablation season for a glacier on the central Tibetan Plateau[J]. Scientific Reports, 2020, 10(1): 1-10. |
36 | Du Wentao, Qin Xiang, Liu Yushuo, et al. Variation of the Laohugou Glacier No. 12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 373-379. |
杜文涛, 秦翔, 刘宇硕, 等. 1958—2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3): 373-379. | |
37 | Liu Y, Qin X, Chen J, et al. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015[J]. Journal of Mountain Science, 2018, 15(1): 25-32. |
38 | Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European journal of Soil Science, 1999, 50(4): 579-590. |
39 | Singer G A, Fasching C, Wilhelm L, et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate[J]. Nature Geoscience, 2012, 5(10): 710-714. |
40 | Zhang Y, Zhang E, Yin Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography, 2010, 55(6): 2645-2659. |
41 | Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969. |
42 | Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. |
43 | Blakney G T, Hendrickson C L, Marshall A G. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments [J]. International Journal of Mass Spectrometry, 2011, 306 (2/3): 246-252. |
44 | Kim S, Kramer R W, Hatcher P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical Chemistry, 2003, 75(20): 5336-5344. |
45 | Koch B P, Dittmar T. From mass to structure: An aromaticity index for high‐resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. |
46 | Koch B, Dittmar T. Corrigendum: From mass to structure: an aromaticity index for high‐resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2015, 30(1): 250-250. |
47 | Spencer R G M, Guo W, Raymond P A, et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2014, 142: 64-74. |
48 | Zhou L, Zhou Y, Hu Y, et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau[J]. Water Research, 2019, 160: 18-28. |
49 | Riedel T, Zark M, Vähätalo A V, et al. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten world rivers[J]. Frontiers in Earth Science, 2016, 4: 85. |
50 | Elliott A, Mundy C J, Gosselin M, et al. Spring production of mycosporine-like amino acids and other UV-absorbing compounds in sea ice-associated algae communities in the Canadian Arctic[J]. Marine Ecology Progress Series, 2015, 541: 91-104. |
51 | Shick J M, Dunlap W C. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms[J]. Annual Review of Physiology, 2002, 64(1): 223-262. |
52 | Mueller D R, Vincent W F, Bonilla S, et al. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem[J]. FEMS Microbiology Ecology, 2005, 53(1): 73-87. |
53 | Mann B F, Chen H, Herndon E M, et al. Indexing permafrost soil organic matter degradation using high-resolution mass spectrometry[J]. PLoS One, 2015, 10(6): e0130557. |
54 | Antony R, Grannas A M, Willoughby A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J]. Environmental Science & Technology, 2014, 48(11): 6151-6159. |
55 | Xu J, Wang Z, Yu G, et al. Seasonal and diurnal variations in aerosol concentrations at a high-altitude site on the northern boundary of Qinghai-Xizang Plateau[J]. Atmospheric Research, 2013, 120: 240-248. |
56 | Lu Y H, Li X, Mesfioui R, et al. Use of ESI-FTICR-MS to characterize dissolved organic matter in headwater streams draining forest-dominated and pasture-dominated watersheds[J]. PLoS One, 2015, 10(12): e0145639. |
57 | Ward N D, Keil R G, Medeiros P M, et al. Degradation of terrestrially derived macromolecules in the Amazon River[J]. Nature Geoscience, 2013, 6(7): 530-533. |
58 | Lechtenfeld O J, Hertkorn N, Shen Y, et al. Marine sequestration of carbon in bacterial metabolites[J]. Nature Communications, 2015, 6(1): 1-8. |
59 | Samui G, Antony R, Thamban M. Fate of dissolved organic carbon in Antarctic Surface Environments during Summer[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(12): e2020JG005958. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[5] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[6] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[7] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[8] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[9] | 刘擎,李宜垠,孙才奇,聂振宇,杨玮琳,崔之久,刘耕年. 青藏高原(格尔木-亚东)冰缘现象及其气候意义[J]. 冰川冻土, 2021, 43(3): 690-700. |
[10] | 张延广,方小敏,毛子强,申茂华,张涛,昝金波,杨胜利. 青藏高原古里雅冰帽冰碛和冰水沉积物粒度特征及其意义[J]. 冰川冻土, 2021, 43(3): 701-713. |
[11] | 李小苗,吴泽坤,彭廷江,马振华,冯展涛,李孟,郭本泓,宋春晖. 青藏高原东北缘小水子地区晚中新世-上新世生态演化及其意义[J]. 冰川冻土, 2021, 43(3): 776-785. |
[12] | 宋艾,杨久成,丁文娜,刘佳. 青藏高原高寒区生物地理学研究进展[J]. 冰川冻土, 2021, 43(3): 786-797. |
[13] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[14] | 范义姣,马箫忆,刘慧,王树源,杨军怀,陈梓炫,高福元,贾佳,夏敦胜. 黄土记录的中亚干旱区东部全新世气候与环境演化[J]. 冰川冻土, 2021, 43(3): 818-826. |
[15] | 游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000