冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 885-901.doi: 10.7522/j.issn.1000-0240.2021.0029
游庆龙1,2(),康世昌3,4,李剑东5,陈德亮6,翟盘茂7,吉振明8,9
收稿日期:
2021-04-12
修回日期:
2021-05-16
出版日期:
2021-06-30
发布日期:
2021-07-29
作者简介:
游庆龙,教授,主要从事青藏高原现代气候环境变化研究. E-mail: 基金资助:
Qinglong YOU1,2(),Shichang KANG3,4,Jiandong LI5,Deliang CHEN6,Panmao ZHAI7,Zhenming JI8,9
Received:
2021-04-12
Revised:
2021-05-16
Online:
2021-06-30
Published:
2021-07-29
摘要:
在全球变化的背景下,青藏高原冰冻圈和大气圈正在发生快速变化,对“亚洲水塔”和“第三极”的生态环境带来深刻影响。研究并梳理了近年来青藏高原气候变化的若干前沿科学问题的研究进展,如高原极端气候事件变化及其与大气环流的关系;高原变暖放大效应及海拔依赖型变暖的物理机制;再分析资料在高原气候变化应用的适用性;气候模式在高原资料稀缺地区的模拟偏差特征及不确定性;以及不同升温阈值下高原气候变化的预估及其风险等。同时展望了高原气候变化研究的前沿问题和科学难点。认清高原气候变化研究的前沿科学问题,可为“一带一路”倡议顺利实施提供科学依据。
中图分类号:
游庆龙,康世昌,李剑东,陈德亮,翟盘茂,吉振明. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901.
Qinglong YOU,Shichang KANG,Jiandong LI,Deliang CHEN,Panmao ZHAI,Zhenming JI. Several research frontiers of climate change over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 885-901.
表1
高原温度响应的物理机制[58],包括平均温度(Tmean)、最高温度(Tmax)和最低温度(Tmin)的响应"
气候驱动因素 | 机制 | 季节相关性 | 温度响应 |
---|---|---|---|
积雪/冰-反照率降低 | 地表吸收太阳辐射增加 | 主要是春季;但在冬季低海拔地区也很重要,夏季高海拔地区,与0 ℃等温线相关 | Tmax增加;如果土壤湿度增加并导致白天蒸发冷却,则会抑制这种影响 |
云覆盖增加(白天) | 到达地表太阳辐射减少 | 所有季节,但夏季影响更大 | Tmax降低 |
云覆盖增加(夜间) | 向下长波辐射增加 | 所有季节,但冬季影响更大 | Tmin增加 |
水汽增加 | 向下长波辐射增加; 向下长波辐射对地表绝对湿度的变化具有高敏感性 | 主要是冬季;秋季和春季影响可能会相对较小 | Tmin增加 |
非吸收性气溶胶增加 | 地表吸收太阳辐射减少; 增加云反照率和云生存期 | 取决于季节性排放 | Tmax降低; 当云生存期增强时,Tmin会小幅增加 |
吸收性气溶胶增加 | 地表吸收太阳辐射减少,但对流层中部加热增加; 减少云和地面积雪的反照率 | 取决于季节性排放 | Tmean增加; 当云覆盖减少时,Tmax增加 |
土地利用变化 | 白天感热通量减少,潜热通量增加 | 多年冻土退化在夏季最强;过度放牧在冬季最为严重 | Tmax增加 |
平流层臭氧总量减少 | 紫外线辐射增加 | 臭氧总量在各季节均呈下降趋势 | 对流层上部到平流层下部的Tmean降低; 对流层中低层的Tmean增加 |
植被增加 | 地表反照率增加; 蒸发冷却增加 | 生长季植被绿化最强 | Tmax降低 |
表2
覆盖全球的主要再分析资料信息表"
来源 | 名称 | 时间 | 同化方案 | 分辨率 |
---|---|---|---|---|
ECMWF | ECMWF Interim Reanalysis (ERA-Interim) | 1979年— | 4D-VAR | 0.75°×0.75° |
ECMWF 40-year Reanalysis (ERA-40) | 1958—2001年 | 3D-VAR | 2.5°×2.5°/ 1.125°×1.125° | |
ERA5 | 1950年— | 4D-VAR | 0.28°×0.28° | |
ERA-20C | 1900—2010年 | 4D-VAR | 0.25°×0.25° | |
Japan Meteorological Agency (JMA) | Japanese 25-year Reanalysis (JRA-25) | 1979—2004年 | 3D-VAR | 1.25°×1.25°/ 2.5°×2.5° |
JMA Climate Data Assimilation System (JCDAS) | 2005年— | 3D-VAR | 1.25°×1.25°/ 2.5°×2.5° | |
Japanese 55-year Reanalysis (JRA-55) | 1958年— | 4D-VAR | 1.25°×1.25° | |
NASA GMAO | NASA MERRA | 1979年1月—2016年2月 | 3D-VAR | 2/3 lon×1/2 lat deg |
NASA MERRA2 | 1980年1月— | 3D-VAR | 5/8 lon×1/2 lat deg | |
NCEP | NCEP Climate Forecast System Reanalysis (CFSR) | 1979年— | 3D-VAR | 5°×5°/2.5°×2.5° |
NCEP/DOE | NCEP/DOE Reanalysis AMIP-II (R2) | 1979年— | 3D-VAR | 2.5°×2.5° |
NCEP/NCAR | NCEP/NCAR Reanalysis I (R1) | 1948年— | 3D-VAR | 2.5°×2.5° |
NOAA PSL | NOAA-CIRES 20th Century Reanalysis (20CR) | 1871—2012年 | Ensemble Kalman Filter | 2°×2° |
NOAA/ESRL PSD | NOAA-CIRES 20th Century Reanalysis (20CRV2c) | 1851—2014年 | Ensemble Kalman Filter | 2°×2° |
NOAA/ESRL PSD | NOAA-CIRES 20th Century Reanalysis (20CRV3) | 1836—2015年 | Ensemble Kalman Filter | 1°×1° |
国家气象信息中心 | CRA-40 | 1979年— | 3D-VAR | 34 km |
1 | Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035. |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035. | |
2 | Zhang Renhe, Su Fengge, Jiang Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3036-3047. |
张人禾, 苏凤阁, 江志红, 等.青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3036-3047. | |
3 | Chen Fahu, An Chengbang, Dong Guanghui, et al. Human activities, environmental changes, and rise and decline of Silk Road civilization in Pan-third Pole region[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 967-975. |
陈发虎, 安成邦, 董广辉, 等. 丝绸之路与泛第三极地区人类活动、环境变化和丝路文明兴衰[J]. 中国科学院院刊, 2017, 32(9): 967-975. | |
4 | Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931. |
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931. | |
5 | Xu Xiangde, Dong Lili, Zhao Yang, et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Chinese Science Bulletin, 2019, 64(27): 2830-2841. |
徐祥德, 董李丽, 赵阳, 等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报, 2019, 64(27): 2830-2841. | |
6 | Yao Tandong, Yu Wusheng, Wu Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2770-2782. |
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2770-2782. | |
7 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Establishment and significance of the scientific system of cryospheric science[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 393-406. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020, 35(4): 394-406. | |
8 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. The cryospheric science for sustainable development[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 1-10. |
秦大河, 姚檀栋, 丁永建, 等.面向可持续发展的冰冻圈科学[J]. 冰川冻土, 2020, 42(1): 1-10. | |
9 | Wu G X, Duan A M, Liu Y M, et al. Tibetan Plateau climate dynamics: recent research progress and outlook[J]. National Science Review, 2015, 2: 100-116. |
10 | Wu Guoxiong, Mao Jiangyu, Duan Anmin, et al. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540. |
吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540. | |
11 | Yao Tandong, Shilong Piao, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 976-984. |
姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984. | |
12 | Fu Y F, Ma Y M, Zhong L, et al. Land surface processes and summer cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective[J]. National Science Review, 2020, 7(3): 500-515. |
13 | Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805. |
丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008, 32(4): 794-805. | |
14 | Immerzeel W W, Bierkens M F P Asia’s water balance[J]. Nature Geoscience, 2012, 5(12): 841-842. |
15 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. | |
16 | Liu Y M, Lu M M, Yang H J, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 2020, 7(3): 534-552. |
17 | Qin D H, Yang J P, Ren J W, et al. Cryospheric Science: research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255-268. |
18 | Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232. |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. | |
19 | Che Tao, Hao Xiaohua, Dai Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253. |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253. | |
20 | Hu Wentao, Yao Tandong, Yu Wusheng, et al. Advances in the study of glacier avalanches in high Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1141-1152. |
胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018, 40(6): 1141-1152. | |
21 | Yang M X, Wang X J, Pang G J, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth Science Reviews, 2019, 190: 353-369. |
22 | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. |
23 | Yao T D, Wu F Y, Ding L, et al. Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488. |
24 | Yao T D, Xue Y K, Chen D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444. |
25 | Duan Anmin, Xiao Zhixiang, Wu Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during1979-2014[J]. Climate Change Research, 2016, 12(5): 374-381. |
段安民, 肖志祥, 吴国雄. 1979-2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381. | |
26 | Observational and Big Data Center Geospatial Data Cloud. Spatial distribution maps of lakes over the Tibetan Plateau (1995-2015)[DB]. National Tibetan Plateau Data Center, 2018. |
27 | Center Global Land Ice Measurements from Space National Snow Ice Data. RGI Qinghai Tibet Plateau glacier data (2015)[DB]. Beijing: National Tibetan Plateau Data Center, 2019. |
28 | Zhao L. A new map of permafrost distribution on the Tibetan Plateau (2017)[DB]. Beijing: National Tibetan Plateau Data Center, 2019. |
29 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等.“亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
30 | IPCC. Summary for policymakers of climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change[J]. Cambridge, UK: Cambridge University Press, 2013. |
31 | Coumou D, Rahmstorf S. A decade of weather extremes[J]. Nature Climate Change, 2012, 2(7): 491-496. |
32 | You Q L, Kang S C, Aguilar E, et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D07101. |
33 | Wu Guoxiong, Duan Anmin, Zhang Xueqin, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 167-171. |
吴国雄, 段安民, 张雪芹, 等.青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013, 35(3): 167-171. | |
34 | You Qinglong, Kang Shichang. Research on characteristics of modern climate change in Tibetan Plateau[M]. Changsha: Hunan Education Press, 2019. |
游庆龙, 康世昌. 青藏高原现代气候变化特征研究[M]. 长沙: 湖南教育出版社, 2019. | |
35 | Bothe O, Fraedrich K, Zhu X H. Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model[J]. International Journal of Climatology, 2011, 31(6): 832-846. |
36 | Chen X Y, You Q L. Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season[J]. Journal of Climate, 2017, 30(22): 8973-8985. |
37 | Bao Y T, You Q L. How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?[J]. Climate Dynamics, 2019, 53(1): 353-370. |
38 | You Q L, Wu F Y, Shen L C, et al. Tibetan Plateau amplification of climate extremes under global warming of 1.5 ℃, 2 ℃ and 3 ℃[J]. Global and Planetary Change, 2020, 192: 103261. |
39 | You Q L, Cai Z Y, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625. |
40 | Chen B, Chao W C, Liu X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study[J]. Climate Dynamics, 2003, 20(4): 401-413. |
41 | You Q L, Jiang Z H, Moore G, et al. Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau[J]. Journal of Climate, 2017, 30: 1721-1737. |
42 | Cai D L, You Q L, Klaus F, et al. Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus[J]. Journal of Climate, 2017, 30: 969-984. |
43 | Liu X D, Cheng Z G, Yan L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global & Planetary Change, 2009, 68(3): 164-174. |
44 | Liu X D, Yin Z Y, Shao X M, et al. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19): 4617-4632. |
45 | Liu X D, Chen B D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1729-1742. |
46 | Palazzi E, Filippi L, Von H J. Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations[J]. Climate Dynamics, 2017, 48(11): 3991-4008. |
47 | Yan L B, Liu Z Y, Chen G S, et al. Mechanisms of elevation-dependent warming over the Tibetan Plateau in quadrupled CO2 experiments[J]. Climatic Change, 2016, 135(3): 509-519. |
48 | Yang K, Ye B S, Zhou D G, et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 2011, 109(3/4): 517-534. |
49 | Yan Y P, You Q L, Wu F Y, et al. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau[J]. Climate Dynamics, 2020, 55(9): 2405-2419. |
50 | Kang S C, Xu Y W, You Q L, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1): 015101. |
51 | Rangwala I, Miller J R. Twentieth Century temperature trends in Colorado's San Juan Mountains[J]. Arctic Antarctic & Alpine Research, 2010, 42(1): 89-97. |
52 | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5: 424-430. |
53 | Rangwala I, Miller J R. Climate change in mountains: a review of elevation-dependent warming and its possible causes[J]. Climatic Change, 2012, 114(3/4): 527-547. |
54 | Tian L D, Yao T D, Li Z, et al. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D13): 2767-2781. |
55 | Kang S C, Zhang Y J, Qin D H, et al. Recent temperature increase recorded in an ice core in the source region of Yangtze River[J]. Science Bulletin, 2007, 52(6): 825-831. |
56 | Qin J, Yang K, Liang S L, et al. The altitudinal dependence of recent rapid warming over the Tibetan Plateau[J]. Climatic Change, 2009, 97(1/2): 321. |
57 | Gao Y H, Chen F, Lettenmaier D P, et al. Does elevation-dependent warming hold true above 5 000 m elevation? Lessons from the Tibetan Plateau[J]. Climate and Atmospheric Science, 2018, 1(1): 19. |
58 | You Q L, Chen D L, Wu F Y, et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349. |
59 | Niu X R, Tang J P, Chen D L, et al. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau[J]. Climate Dynamics, 2021: 1-19. |
60 | Niu X R, Tang J P, Chen D L, et al. Elevation-dependent warming over the Tibetan Plateau from an ensemble of CORDEX-EA regional climate simulations[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD033997. |
61 | Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11): 1631-1643. |
62 | Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-472. |
63 | Wang A H, Zeng X B. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres2012, 117(D5): D05102. |
64 | Ding Xu, Lai Xin, Fan Guangzhou, et al. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(3): 626-641. |
丁旭, 赖欣, 范广洲, 等. 再分析土壤温湿度资料在青藏高原地区适用性的分析[J]. 高原气象, 2018, 37(3): 626-641. | |
65 | Zhao Y, Zhou T J. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis data sets[J]. Climate Dynamics, 2020, 54(1): 231-245. |
66 | Li Chuan, Zhang Yanjun, Chen Jing. Climatic change of Qinghai Xizang Plateau region in recent 40 year reanalysis and surface observation data-contrast of observational data and NCEP, ECMWF surface air temperature and precipitation[J]. Plateau Meteorology, 2004, 23(1): 97-103. |
李川, 张廷军, 陈静. 近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象, 2004, 23(1): 97-103. | |
67 | Ma L J, Zhang T J, Li Q X, et al. Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D15115. |
68 | Simmons A J, Jones P D, Bechtold V D, et al. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature[J]. Journal of Geophysical Research: Atmospheres, 2004, 109: D24115 |
69 | Frauenfeld O W, Zhang T J, Serreze M C. Climate change and variability using European Centre for Medium‐Range Weather Forecasts reanalysis (ERA‐40) temperatures on the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D2): D02101. |
70 | You Q L, Kang S C, Pepin N, et al. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data[J]. Global and Planetary Change, 2010, 71(1/2): 124-133. |
71 | You Q L, Kang S C, Pepin N, et al. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005[J]. Geophysical Research Letters, 2008, 35: L04704. |
72 | He J, Zhang F Q, Chen X C, et al. Development and evaluation of an ensemble-based data assimilation system for regional reanalysis over the Tibetan Plateau and Surrounding regions[J]. Journal of advances in modeling earth systems, 2019, 11(8): 2503-2522. |
73 | Jiang Z H, Li W, Xu J J, et al. Extreme precipitation indices over China in CMIP5 models. Part I: model evaluation[J]. Journal of Climate, 2015, 28: 8603-8619. |
74 | Jiang Z H, Song J, Li L, et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection[J]. Climatic Change, 2012, 110(1/2): 385-401. |
75 | Marotzke J. Quantifying the irreducible uncertainty in near-term climate projections[J]. WIREs Climate Change, 2019, 10(1): e563. |
76 | Pfahl S, Ogorman P A, Fischer E M. Understanding the regional pattern of projected future changes in extreme precipitation[J]. Nature Climate Change, 2017, 7(6): 423-427. |
77 | Shepherd T G. The dynamics of temperature extremes[J]. Nature, 2015, 522: 425. |
78 | Hu Qing, Jiang Dabang, Fan Guangzhou. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938. |
胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938. | |
79 | Su F G, Duan X L, Chen D L, et al. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(10): 3187-3208. |
80 | Yang T, Hao X B, Shao Q X, et al. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century[J]. Global and Planetary Change, 2012, 80: 1-13. |
81 | Zhou Tianjun, Zhang Wenxia, Chen Xiaolong, et al. The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties[J]. Journal of the Meteorological Sciences, 2020, 40(5): 697-710. |
周天军, 张文霞, 陈晓龙, 等. 青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J]. 气象科学, 2020, 40(5): 697-710. | |
82 | Li Hongmei, Li Lin. Mean and extreme climate change on the Qinghai-Tibetan Plateau with a 2 ℃ global warming[J]. Climate Change Research, 2015, 11(3): 157-164. |
李红梅, 李林. 2 ℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J]. 气候变化研究进展, 2015, 11(3): 157-164. | |
83 | Liu Xiaodong, Cheng Zhigang, Zhang Ran. The A1B scenario projection for climate change over the Tibetan Plateau in the next30~50 years[J]. Plateau Meteorology, 2009, 28(3): 475-484. |
刘晓东, 程志刚, 张冉. 青藏高原未来30~50年A1B情景下气候变化预估[J]. 高原气象, 2009, 28(3): 475-484. | |
84 | Ji Z M, Kang S C. Double-nested dynamical downscaling experiments over the Tibetan Plateau and Their projection of climate change under two RCP scenarios[J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1278-1290. |
85 | Guo D L, Sun J Q, Yu E T. Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2018, 11(3): 219-227. |
86 | Wang X, Tolksdorf V, Otto M, et al. WRF-based dynamical downscaling of ERA5reanalysis data for High Mountain Asia: towards a new version of the High Asia refined analysis[J]. International Journal of Climatology, 2021, 41(1): 743-762. |
87 | Pritchard D M W, Forsythe N, Fowler H J, et al. Evaluation of upper indus near-surface climate representation by WRF in the High Asia refined analysis[J]. Journal of Hydrometeorology, 2019, 20(3): 467-487. |
88 | Ou T H, Chen D L, Chen X C, et al. Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization[J]. Climate Dynamics, 2020, 54(7/8): 3525-3539. |
89 | Prein A F, Langhans W, Fosser G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361. |
90 | Deque M, Rowell D P, Luethi D, et al. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections[J]. Climatic Change, 2007, 81: 53-70. |
91 | Weisman M L, Skamarock W C, Klemp J B. The resolution dependence of explicitly modeled convective systems[J]. Monthly Weather Review, 1997, 125(4): 527-548. |
92 | Richard E, Buzzi A, Zaengl G. Quantitative precipitation forecasting in the Alps: the advances achieved by the Mesoscale Alpine Programme[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 831-846. |
93 | Lean H W, Clark P A, Dixon M, et al. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom[J]. Monthly Weather Review, 2008, 136(9): 3408-3424. |
94 | Skamarock W C, Klemp J B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. Journal of Computational Physics, 2008, 227(7): 3465-3485. |
95 | Kendon E J, Roberts N M, Senior C A, et al. Realism of rainfall in a very high-resolution regional climate model[J]. Journal of Climate, 2012, 25(17): 5791-5806. |
96 | Ban N, Schmidli J, Schär C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 7889-7907. |
97 | Fosser G, Khodayar S, Berg P. Benefit of convection permitting climate model simulations in the representation of convective precipitation[J]. Climate Dynamics, 2015, 44(1/2): 45-60. |
98 | Li P X, Furtado K, Zhou T J, et al. Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(734): 341-362. |
99 | Zhou Y H, Zhang Y, Li J, et al. Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach[J]. Geoscientific Model Development, 2020, 13(12): 6325-6348. |
100 | Zhou X, Yang K, Ouyang L, et al. Added value of kilometer-scale modeling over the Third Pole region: a CORDEX-CPTP pilot study[J]. Climate Dynamics, 2021, in press. |
101 | Hawkins E, Sutton R. The potential to narrow uncertainty in regional climate predictions[J]. Bulletin of the American Meteorological Society, 2009, 90(8): 1095-1107. |
102 | Hawkins E, Sutton R. The potential to narrow uncertainty in projections of regional precipitation change[J]. Climate Dynamics, 2011, 37(1/2): 407-418. |
103 | Li J D, Sun Z A, Liu Y M, et al. Top‐of‐atmosphere radiation budget and cloud radiative effects over the Tibetan Plateau and adjacent monsoon regions from CMIP6 simulations[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD034345. |
104 | Gao Y H, Chen D L. Modeling of regional climate over the Tibetan Plateau[M]. Oxford, UK: Oxford University Press, 2017. |
105 | Jiang Zhihong, Chen Weilin, Song Jie, et al. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 109-120. |
江志红, 陈威霖, 宋洁, 等. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J]. 大气科学, 2009, 33(1): 109-120. | |
106 | Ding Yuguo, Li Jiayun, Jiang Zhihong, et al. Advances in extremes statistics and their application to climate change study[J]. Advances in Climate Change Research, 2011, 7(4): 248-252. |
丁裕国, 李佳耘, 江志红, 等. 极值统计理论的进展及其在气候变化研究中的应用[J]. 气候变化研究进展, 2011, 7(4): 248-252. | |
107 | UNFCCC. Adoption of the Paris agreement[R]. United Nations Framework Convention on Climate Change, 2015. |
108 | Masson-Delmotte V, Zhai P M, Pörtner H O, et al. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, developmentsustainable, and efforts to eradicate poverty[R]. Intergovernmental Panel on Climate Change, 2018. |
109 | Zhai Panmao, Yu Rong, Zhou Baiquan, et al. Research progress in impact of 1.5 ℃ global warming on global and regional scales[J]. Climate Change Research, 2017, 13(5): 465-472. |
翟盘茂, 余荣, 周佰铨, 等. 1.5 ℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5): 465-472. | |
110 | Knutti R, Rogelj J, Sedlacek J, et al. A scientific critique of the two-degree climate change target[J]. Nature Geoscience, 2016, 9(1): 13-18. |
111 | The World Bank. Tum down the heat: why a 4 ℃ warmer world must be avoided[R]. Washington, DC: The World Bank, 2012. |
112 | Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260. |
113 | Wu Fangying, You Qinglong, Xie Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15(2): 130-139. |
吴芳营, 游庆龙, 谢文欣, 等. 全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139. | |
114 | You Q L, Wu F Y, Wang H G, et al. Projected changes in snow water equivalent over the Tibetan Plateau under global warming of 1.5 ℃ and 2 ℃[J]. Journal of Climate, 2020, 33(12): 5141-5154. |
115 | Aghakouchak A, Chiang F, Huning L S, et al. Climate extremes and compound hazards in a warming world[J]. Annual Review of Earth and Planetary Sciences, 2020, 48(1): 519-548. |
116 | Wu Guangjian, Yao Tandong, Wang Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292. |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11): 1285-1292. | |
117 | Gao J, Yao T D, Valérie M, et al. Collapsing glaciers threaten Asia's water supplies[J]. Nature, 2019, 565: 19-21. |
118 | Kang S C, Zhang Q G, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review, 2019, 6: 796-809. |
119 | Zhang Jianyun, Liu Jiufu, Jin Junliang, et al. Evolution and trend of water resources in Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1264-1273. |
张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264-1273. | |
120 | Tang Qiuhong, Lan Cuo, Su Fengge, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019, 64(27): 2807-2821. |
汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019, 64(27): 2807-2821. | |
121 | Xu Xiangde, Ma Yaoming, Sun Chan, et al. Effect of energy and water circulation over Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1293-1305. |
徐祥德, 马耀明, 孙婵, 等. 青藏高原能量、水分循环影响效应[J]. 中国科学院院刊, 2019, 34(11): 1293-1305. | |
122 | You Q L, Wu T, Shen L C, et al. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system[J]. Earth-Science Reviews, 2020, 201: 103043. |
123 | You Q L, Zhang Y Q, Xie X Y, et al. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 ℃ and 2 ℃[J]. Climate Dynamics, 2019, 53: 2047-2060. |
124 | Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385. |
125 | Zhang H B, Immerzeel W W, Zhang F, et al. Creating 1-km long-term (1980-2014) daily average air temperatures over the Tibetan Plateau by integrating eight types of reanalysis and land data assimilation products downscaled with MODIS-estimated temperature lapse rates based on machine learning[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 97: 102295. |
126 | Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
127 | He Shengping, Wang Huijun, Li Hua, et al. Machine learning and its potential application to climate prediction[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 26-38. |
贺圣平, 王会军, 李华, 等. 机器学习的原理及其在气候预测中的潜在应用[J]. 大气科学学报, 2021, 44(1): 26-38. | |
128 | Cheng Xianyi, Xie Lu, Zhu Jianxin, et al. Review of generative adversarial network[J]. Computer Science, 2019, 46(3): 74-81. |
程显毅, 谢璐, 朱建新, 等. 生成对抗网络GAN综述[J]. 计算机科学, 2019, 46(3): 74-81. | |
129 | Zhou T J, Zhang W X. Anthropogenic warming of Tibetan Plateau and constrained future projection[J]. Environmental Research Letters, 2021, 16(4): 044039. |
130 | Sun Y, Song L C, Yin H, et al. Human Influence on the 2015 extreme high temperature events in Western China[J]. Bulletin of the American Meteorological Society, 2016, 97(12): S102-S106. |
131 | Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 36(1): 335-358. |
132 | Xu B Q, Cao J J, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22114-22118. |
133 | Kang S C, Zhang Y L, Qian Y, et al. A review of black carbon in snow and ice and its impact on the cryosphere[J]. Earth-Science Reviews, 2020, 210: 103346. |
[1] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[2] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[3] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[4] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[5] | 姚俊强,陈静,迪丽努尔·托列吾别克null,韩雪云,毛炜峄. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511. |
[6] | 罗谨,王军邦,杨永胜,张光茹,祝景彬,贺慧丹,李英年. 1991—2015年三江源河曲高寒草甸干湿状况及牧草产量变化的气候归因研究[J]. 冰川冻土, 2021, 43(5): 1542-1550. |
[7] | 张齐民,闫世勇,吕明阳,张露,刘广. 高分三号山地冰川表面运动提取与分析[J]. 冰川冻土, 2021, 43(5): 1594-1605. |
[8] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[9] | 刘艺阗,姚济敏,赵林,肖瑶,乔永平,史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
[10] | 张明礼,王斌,王得楷,叶伟林,郭宗云,高樯,岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[11] | 刘宏超,马俊杰,李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[12] | 段丽君,申红艳,余迪,马有绚,白文蓉,李万志. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43(4): 939-947. |
[13] | 王修喜,张研博,王红,刘慧明,庞博中,王领兵. 西秦岭新生代夷平面发育特征和年代及其意义[J]. 冰川冻土, 2021, 43(3): 841-852. |
[14] | 范义姣,马箫忆,刘慧,王树源,杨军怀,陈梓炫,高福元,贾佳,夏敦胜. 黄土记录的中亚干旱区东部全新世气候与环境演化[J]. 冰川冻土, 2021, 43(3): 818-826. |
[15] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000