冰川冻土 ›› 2021, Vol. 43 ›› Issue (1): 285-295.doi: 10.7522/j.issn.1000-0240.2021.0040
收稿日期:
2020-08-21
修回日期:
2020-11-12
出版日期:
2021-02-28
发布日期:
2021-04-06
通讯作者:
张廷军
E-mail:shaoww09@lzu.edu.cn;tjzhang@lzu.edu.cn
作者简介:
邵婉婉,博士研究生,主要从事冻土研究. E-mail:shaoww09@lzu.edu.cn
基金资助:
Wanwan SHAO(), Tingjun ZHANG(
)
Received:
2020-08-21
Revised:
2020-11-12
Online:
2021-02-28
Published:
2021-04-06
Contact:
Tingjun ZHANG
E-mail:shaoww09@lzu.edu.cn;tjzhang@lzu.edu.cn
摘要:
近地表土壤冻融循环过程是陆面过程的“开关”,对地表能量过程、水文过程、植被动态、温室气体交换和生态系统功能等都具有重要影响。除了依靠传统观测手段判别地表冻融,被动微波卫星遥感技术已被成熟运用于全球尺度地表冻融研究中。利用被动微波卫星遥感亮温监测地表冻融大致经历了理论基础和算法的研制、算法参数的验证和应用以及建立数据集三个主要过程,并基于不同的算法针对不同目的分别发布了不同地区、不同时间序列的近地表土壤冻融数据集。以中国气象局435个气象台站观测的0 cm土壤温度为标准,对比分析了基于目前较为通用的双指标算法、单指标算法、决策树算法和判别式算法建立的近地表土壤冻融数据集的分类结果。结果表明:单指标算法数据集冻结指标的平均值与观测资料最接近,其偏差和均方根误差最小,而决策树算法由于全局采用单一的37 GHz垂直极化亮温阈值,低估了地表冻结,导致偏差和均方根误差最大。近地表土壤冻融数据集和观测资料均表明随着全球变暖,近地表土壤呈冻结首日推迟、冻结终日提前和冻结天数减少的趋势。通过对不同冻融数据集的比较研究,为未来被动微波卫星遥感算法改进、近地表土壤冻融数据的合理使用提供了可靠的科学依据。
中图分类号:
邵婉婉, 张廷军. 被动微波遥感近地表土壤冻融状态数据产品对比及分析[J]. 冰川冻土, 2021, 43(1): 285-295.
Wanwan SHAO, Tingjun ZHANG. Comparison and analysis of the near-surface soil freeze/thaw status datasets obtained by passive microwave remote sensing[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 285-295.
1 | Kim Y, Kimball J S, McDonald K C, et al. developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49: 949-960. |
2 | Zhao T, Shi J, Hu T, et al. Estimation of high-resolution near-surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau[J]. Earth and Space Science, 2017, 4: 472-484. |
3 | Guo D, Yang M, Wang H. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J]. Hydrological Processes, 2011, 25(16): 2531-2541. |
4 | Jiang Jinghai, Wang Chenghai. Study on the relationship between seasonal freezing-thawing areas and summer precipitation in the Northern Hemisphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 53-61. |
蒋靖海, 王澄海. 北半球季节性冻融区与北半球夏季降水关系的研究[J]. 冰川冻土, 2020, 42(1): 53-61. | |
5 | Michelsen A, Larsen K S, Jonasson S. Repeated freeze/thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187-195. |
6 | Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology and Biochemistry, 1996, 28(8): 1061-1066. |
7 | Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability[J]. Applied Soil Ecology,2007, 35(1): 247-255. |
8 | Yang Shuhua, Li Ren, Wu Tonghua, et al. The variation characteristics of different freeze-thaw status in the near surface and the relationship with temperature over the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1377-1387. |
杨淑华, 李韧, 吴通华, 等. 青藏高原近地表土壤不同冻融状态的变化特征及其与气候的关系[J]. 冰川冻土, 2019, 41(6): 1377-1387. | |
9 | Peng X, Frauenfeld O W, Cao B, et al. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China[J]. Journal of Geophysical Research: Earth Surface, 2016, 121: 1984-2000. |
10 | Boeckli L, Brenning A, Gruber S, et al. A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges[J]. The Cryosphere, 2012, 6(1): 125-140. |
11 | Cao B, Gruber S, Zhang T, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface, 2017, 122: 574-591. |
12 | Ma Y, Zhang Y, Zubrzycki S, et al. Hillslope-scale variability in seasonal frost depth and soil water content investigated by GPR on the southern margin of the sporadic permafrost zone on the Tibetan Plateau[J]. Permafrost and Periglacial Processes, 2015, 26(4): 321-334. |
13 | Guo D, Yang M, Wang H. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J]. Hydrological processes, 2011, 15(16): 2531-2541. |
14 | Bartsch A, Kidd R A, Wagner W, et al. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatter meter data[J]. Remote Sensing of Environment, 2007, 106(3): 360-374. |
15 | Kim Y, Kimball J S, Glassy J, Du J. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing[J]. Earth System Science Data, 2017, 9(1): 133-147. |
16 | Leverington D W, Duguay C R. Evaluation of three supervised classifiers in mapping depth to late-summer frozen ground, Central Yukon Territory[J]. Canadian Journal of Remote Sensing, 1996, 22(2): 163-174. |
17 | Zhang T, Barry R G, Armstrong R L. Application of satellite remote sensing techniques to frozen ground studies[J]. Polar Geography, 2004, 28(3): 163-196. |
18 | Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: visible-thermal infrared and Radar sensor[J]. Advances in Earth Science, 2009, 24(9): 963-972. |
张廷军, 晋锐, 高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972. | |
19 | Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: passive microwave sensors[J]. Advances in Earth Science, 2009, 24(10): 1073-1083. |
张廷军, 晋锐, 高峰. 冻土遥感研究进展——被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083. | |
20 | Judge J, Galantowicz J F, England A W, et al. Freeze/thaw classification for prairie soils using SSM/I radiobrightnesses[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997, 35(4): 827-832. |
21 | Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001, 28(5): 763-766. |
22 | Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: algorithm development and validation[J]. Journal of Geophysical Research, 2003, 108(D22): 2003JD003530. |
23 | Smith N V, Saatchi S S, Randerson J T. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002[J]. Journal of Geophysical Research D: Atmospheres, 2004, 109(D12): D12101. |
24 | Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface freeze/thaw classification using SSM/I[J]. Journal of Remote Sensing, 2008, 12(6): 1017-1027. |
晋锐, 李新, 车涛. SSM/I监测地表冻融状态的决策树算法[J]. 遥感学报, 2008, 12(6): 1017-1027. | |
25 | Jin R, Li X, Che T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment, 2009, 113(12): 2651-2660. |
26 | Zhao T, Zhang L, Jiang L, et al. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J]. Hydrological Processes, 2011, 25(11): 1704-1716. |
27 | Zhao Tianjie, Zhang Lixin, Jiang Lingmei, et al. Microwave radiation of frozen and thawed soils under complicated surface condition: simulation and discrimination analysis[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 220-226. |
赵天杰, 张立新, 蒋玲梅, 等. 复杂地表条件下冻融土的微波辐射特性模拟及判别分析[J]. 冰川冻土, 2009, 31(2): 220-226. | |
28 | Jin R, Zhang T, Li X, et al. Mapping surface soil freeze-thaw cycles in China based on SMMR and SSM/I brightness temperatures from 1978 to 2008[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 213-229. |
29 | Jin Rui, Li Xin. Long-term surface soil freeze-thaw states dataset of China using the dual-index algorithm (1978-2015)[DS]. Beijing: National Tibetan Plateau Data Center, 2011. DOI:10.11888/Geocry.tpdc.270029. CSTR: 18046.11.Geocry.tpdc.270029 . |
晋锐, 李新. 中国长序列地表冻融数据集——双指标算法(1978—2015)[DS]. 北京: 国家青藏高原科学数据中心, 2011. DOI: 10.11888/Geocry.tpdc.270029. CSTR: 18046.11.Geocry.tpdc.270029 . | |
30 | Jin Rui, Li Xin. China long-sequence surface freeze-thaw dataset——decision tree algorithm (1987-2009)[DS]. Beijing: National Tibetan Plateau Data Center, 2012. DOI:10.11888/Geocry.tpdc.270622. CSTR: 18046.11.Geocry.tpdc.270622 . |
李新, 晋锐. 中国长序列地表冻融数据集——决策树算法(1987—2009)[DS]. 北京: 国家青藏高原科学数据中心, 2012. DOI:10.11888/Geocry.tpdc.270622. CSTR: 18046.11.Geocry.tpdc.270622 . | |
31 | Kim Y, Kimball J, Glassy J, et al. MEaSUREs global record of daily landscape freeze/thaw status, Version4[M]. Colorado: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017. |
32 | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: an overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002. |
33 | Wang K, Zhang T, Zhong X. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J]. The Cryosphere, 2015, 9(3): 1321-1331. |
34 | Cao Meisheng, Zhang Tiejun. Monitoring terrain soil freeze/thaw condition on Qinghai Plateau in spring and autumn using microwave remote sensing[J]. Journal of Remote Sensing, 1997, 1(2): 139-144. |
曹梅盛, 张铁钧. 青海高原春秋季地表土冻融的微波遥感监测[J]. 遥感学报, 1997, 1(2): 139-144. | |
35 | Han L, Tsunekawa A, Tsubo M. Monitoring near-surface soil freeze-thaw cycles in northern China and Mongolia from 1998 to 2007[J]. International Journal of Applied Earth Observation & Geoinformation, 2010,12(5): 375-384. |
36 | Shao W, Zhang T. Assessment of four near-surface soil freeze/thaw detection algorithms based on calibrated passive microwave remote sensing data over China[J]. Earth and Space Science, 2020, 7(7): 1-19. |
[1] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[2] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[3] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[4] | 刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339. |
[5] | 解邦龙, 张吾渝, 孙翔龙, 刘乐青, 刘成奎. 不同温控曲线对石灰改良黄土强度影响研究[J]. 冰川冻土, 2022, 44(1): 262-274. |
[6] | 王飞, 李国玉, 马巍. 多年冻土区输油管道-管周冻土热力相互作用研究进展[J]. 冰川冻土, 2022, 44(1): 217-228. |
[7] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[8] | 杜冉, 彭小清, 金浩东, 魏庆, 孙文, 贾诗超, 范成彦, 王昆, 魏思浩, 赵耀华, FRAUENFELD Oliver W.. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188-202. |
[9] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[10] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[11] | 柴明堂,马巍,穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808. |
[12] | 何成旦, 李亚胜, 温智, 王永瑞, 张霄, 金龙, 殷子涵, 权素君. 月球极区冻结模拟月壤物理力学特性研究[J]. 冰川冻土, 2021, 43(6): 1773-1781. |
[13] | 王萍,赵慧颖,闫平,朱海霞,翟墨,李秀芬. 黑龙江省土壤冻融期气象要素变化特征[J]. 冰川冻土, 2021, 43(6): 1764-1772. |
[14] | 焦志平,江利明,牛富俊,郭瑞,周志伟. 藏东冻土区滑坡形变时序InSAR监测分析[J]. 冰川冻土, 2021, 43(5): 1312-1322. |
[15] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000