1 |
Zhang Tingjun, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 147-149.
|
2 |
Luo Dongliang, Wu Qubgbau, Jin Huijun, et al. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 2016, 75(7): 555-570.
|
3 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
4 |
Yin Guo’an, Niu Fujun, Lin Zhanju, et al. The distribution characteristics of permafrost along the Qinghai-Tibet Railway and their response to environmental change[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 772-781.
|
|
尹国安, 牛富俊, 林战举, 等. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应[J]. 冰川冻土, 2014, 36(4): 772-781.
|
5 |
Li Yongqiang, Han Limin. Engineering geological characteristic and evalution of permafromast ground along Qinghai-Tibet Railway[J]. Journal of Engineering Geology, 2008, 16(2): 245-249.
|
|
李永强, 韩利民. 青藏铁路多年冻土工程地质特征及其评价[J]. 工程地质学报, 2008, 16(2): 245-249.
|
6 |
Wu Qingbai, Liu Yongzhi, Tong Changjian, et al. Interactions between the frozen-soil and engineering environments in the cold regions[J]. Journal of Engineering Geology, 2000, 8(3): 281-287.
|
|
吴青柏, 刘永智, 童长江, 等. 寒区冻土环境与工程环境间的相互作用[J]. 工程地质学报, 2000, 8(3): 281-287.
|
7 |
Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255.
|
|
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系[J]. 冰川冻土, 2003, 25(3): 250-255.
|
8 |
Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China: Series D Earth Sciences, 2006, 49(11): 1156-1169.
|
|
王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学: D辑 地球科学, 2006, 36(8): 743-754.
|
9 |
Abbott B W, Jones J B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra[J]. Global Change Biology, 2015, 21(12): 4570-4587.
|
10 |
Liljedahl A K, Boike J, Daanen R P, et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology[J/OL]. Nature Geoscience, 2016 [2021-03-03]. .
|
11 |
Xu Guochang, Li Meifang. Temperature in Qinghai-Xizang Plateau and the atmospheric circulation in the East Asia[J]. Plateau Meteorology, 1985, 4(2): 185-189.
|
|
徐国昌, 李梅芳. 青藏高原温度与东亚环流[J]. 高原气象, 1985, 4(2): 185-189.
|
12 |
Wang Chenghai, Dong Wenjie, Wei Zhigang. Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia[J]. Chinese Journal of Geophysics, 2003, 46(3): 309-315.
|
|
王澄海, 董文杰, 韦志刚. 青藏高原季节冻融过程与东亚大气环流关系的研究[J]. 地球物理学报, 2003, 46(3): 309-315.
|
13 |
Ding Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10): 1067-1076.
|
|
丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10): 1067-1076.
|
14 |
Riseborough D, Shiklomanov N, Etzelmüller B, et al. Recent advances in permafrost modelling[J]. Permafrost and Periglacial Processes, 2010, 19(2): 137-156.
|
15 |
Sun Zhe, Zhao Lin, Hu Guojie, et al. Modeling permafrost changes on the Qinghai-Tibetan Plateau from 1966 to 2100: a case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 2019, 31(1): 156-171.
|
16 |
Guo Donglin, Wang Huijun. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5216-5230.
|
17 |
Ma Shuai, Shen Yu, Cao Wei, et al. Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River[J]. Acta Geographica Sinica, 2017, 72(9): 1621-1633.
|
|
马帅, 盛煜, 曹伟, 等. 黄河源区多年冻土空间分布变化特征数值模拟[J]. 地理学报, 2017, 72(9): 1621-1633.
|
18 |
Wu Xiaobo, Zhuotong Nan, Zhao Shuping, et al. Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2018, 29(2): 86-99.
|
19 |
Qin Yanhui, Wu Tonghua, Zhao Lin, et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11604-11620.
|
20 |
Cao Yuanbing, Sheng Yu, Wu Jichun, et al. Influence of upper boundary conditions on simulated ground temperature field in permafrost regions[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 802-810.
|
|
曹元兵, 盛煜, 吴吉春, 等. 上边界条件对多年冻土地温场数值模拟结果的影响分析[J]. 冰川冻土, 2014, 36(4): 802-810.
|
21 |
Li Xiangfei, Wu Tonghua, Zhu Xiaofan, et al. Improving the Noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(16): 1-20.
|
22 |
Stevens M B, Smerdon J E, González-Rouco J F, et al. Effects of bottom boundary placement on subsurface heat storage: implications for climate model simulations[J]. Geophysical Research Letters, 2007, 34(2): 170-206.
|
23 |
Alexeev V A, Nicolsky D J, Romanovsky V E, et al. An evaluation of deep soil configuration in the CLM3 for improved representation of permafrost[J]. Geophysical Research Letters, 2007, 34(9): 13887-13892.
|
24 |
Zhuotong Nan, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China: Series D Earth Sciences, 2005, 48(6): 797-804.
|
|
南卓铜, 李述训, 程国栋. 未来50与100 a青藏高原多年冻土变化情景预测[J]. 中国科学: D辑 地球科学, 2004, 34(6): 528-534.
|
25 |
Wang Chenghai, Wang Zhilan, Kong Ying, et al. Most of the Northern Hemisphere permafrost remains under climate change[J]. Scientific Reports, 2019, 9(1): 3295-3305.
|
26 |
Lunardini V J. Climatic warming and the degradation of warm permafrost[J]. Permafrost and Periglacial Processes, 1996, 7(4): 311-320.
|
27 |
Lebret P, Dupas A, Clet M, et al. Modelling of permafrost thickness during the late glacial stage in France: preliminary results[J]. Canadian Journal of Earth Sciences, 1994, 31(6): 959-968.
|
28 |
Lachenbruch A H, Sass J H, Marshall B V, et al. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska[J]. Journal of Geophysical Research: Atmospheres, 1982, 87(B11): 9301-9316.
|
29 |
Romanovsky V E, Smith S L, Christiansen H H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis[J]. Permafrost and Periglacial Processes, 2010, 21(2): 106-116.
|
30 |
Ji Guoliang. Advances in energy budget observation experiment over the Qinghai-Xizang Plateau[J]. Plateau Meterology, 1999, 18(3): 333-340.
|
|
季国良. 青藏高原能量收支观测实验的新进展[J]. 高原气象, 1999, 18(3): 333-340.
|
31 |
Zhao Lin, Cheng Guodong, Li Shuxun, et al. Process of freezing and thawing in active layer in Wudaoliang permafrost region of the Tibetan-Qinghai Plateau[J]. Chinese Science Bulletin, 2000, 45(11): 1205-1211.
|
|
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.
|
32 |
Du Yizhen, Li Ren, Zhao Lin, et al. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau[J/OL]. Catena, 2020, 193 [2021-04-07]. .
|
33 |
Hu Guojie, Zhao Lin, Li Ren, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products[J]. Geoderma, 2019, 337: 893-905.
|
34 |
Li Ren, Zhao Lin, Wu Tonghua, et al. Soil thermal regime of active layer in Wudaoliang region of the Yangzi Rive source[J]. Arid Land Geography, 2013, 36(2): 277-284.
|
|
李韧, 赵林, 吴通华, 等. 长江源区五道梁的土壤热状况研究[J]. 干旱区地理, 2013, 36(2): 277-284.
|
35 |
Li Ren, Zhao Lin, Ding Yongjian, et al. The features of each components in the surface heat balance equation over Wudaoliang, northern Tibetan Plateau[J]. Journal of Mountain Science, 2007, 25(6): 664-670.
|
|
李韧, 赵林, 丁永建, 等. 青藏高原北部五道梁地表热量平衡方程中各分量特征[J]. 山地学报, 2007, 25(6): 664-670.
|
36 |
Zhou Huayun, Zhao Lin, Tian Liming, et al. Monitoring and analysis of surface deformation in the permafrost area of Wudaoliang on the Tibetan Plateau based on Sentinel-1 data[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 525-536.
|
|
周华云, 赵林, 田黎明, 等. 基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析[J]. 冰川冻土, 2019, 41(3): 525-536.
|
37 |
Xiao Yao, Zhao Lin, Li Ren, et al. The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 480-488.
|
|
肖瑶, 赵林, 李韧, 等. 藏北高原多年冻土区地表反照率特征分析[J]. 冰川冻土, 2010, 32(3): 480-488.
|
38 |
Zhao Lin, Zou Defu, Hu Guojie, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 396-405.
|
39 |
Hu Guojie, Zhao Lin, Li Ren, et al. A model for obtaining ground temperature from air temperature in permafrost regions on the Qinghai-Tibetan Plateau[J]. Catena, 2020, 189: 104470-104482.
|
40 |
Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost change and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletion of Chinese Academy of Sciences, 2019, 34(11): 41-54.
|
|
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 41-54.
|
41 |
Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Science Bulletin, 2019, 64(27): 2783-2795.
|
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
|
42 |
Xu Chonghai, Xu Ying. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble[J]. Atmospheric and Oceanic Science Letters, 2012, 5(6): 527-533.
|
43 |
Chang Yan, Shihua Lü, Luo Siqiong, et al. Evaluation and projections of permafrost on the Qinghai-Xizang Plateau by CMIP5 coupled climate models[J]. Plateau Meteorology, 2016, 35(5): 1157-1168.
|
|
常燕, 吕世华, 罗斯琼, 等. CMIP5耦合模式对青藏高原冻土变化的模拟和预估[J]. 高原气象, 2016, 35(5): 1157-1168.
|
44 |
Wu Qingbai, Jiang Guanli, Pu Yibin, et al. Relationship between permafrost and gas hydrates on Qinghai-Tibet Plateau[J]. Geologial Bulletin of China, 2006, 25(2): 29-33.
|
|
吴青柏, 蒋观利, 蒲毅彬, 等. 青藏高原天然气水合物的形成与多年冻土的关系[J]. 地质通报, 2006, 25(2): 29-33.
|
45 |
Liu Jia. Reconstruction of the past ground surface temperature changes using borhole paleothermometry[D]. Lanzhou: Lanzhou University, 2015.
|
|
刘佳. 利用钻孔温度梯度重建过去地表温度变化研究[D]. 兰州: 兰州大学, 2015.
|
46 |
Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China: Series D Earth Sciences, 2010, 53(1): 150-158.
|
|
吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式[J]. 中国科学: D辑 地球科学, 2009, 39(11): 1570-1578.
|
47 |
Jin Huijun, Wei Zhi, Wang Shaoling, et al. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China[J]. Engineering Geology, 2008, 101(3): 96-109.
|
48 |
Guo Donglin, Wang Huijun, Li Duo. A projection of permafrost degradation on the Tibetan Plateau during the 21st century[J/OL]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5) [2021-04-07]. .
|
49 |
Jin Huijun, Zhao Lin, Wang Shaoling, et al.Thermal regim es and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China: Earth Sciences, 2006, 49(11): 1170-1183.
|
|
金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学: 地球科学, 2006, 36(11): 1009-1019.
|