冰川冻土 ›› 2021, Vol. 43 ›› Issue (4): 948-963.doi: 10.7522/j.issn.1000-0240.2021.0054
胡锦华1,2(), 陆峥1,2, 仝金辉1,2, 李小雁1,2, 刘绍民1,2, 杨晓帆1,2(
)
收稿日期:
2021-02-08
修回日期:
2021-06-20
出版日期:
2021-08-31
发布日期:
2021-09-09
通讯作者:
杨晓帆
E-mail:hujinhua@mail.bnu.edu.cn;xfyang@bnu.edu.cn
作者简介:
胡锦华,博士研究生,主要从事寒区水文模拟研究. E-mail: hujinhua@mail.bnu.edu.cn
基金资助:
Jinhua HU1,2(), Zheng LU1,2, Jinhui TONG1,2, Xiaoyan LI1,2, Shaomin LIU1,2, Xiaofan YANG1,2(
)
Received:
2021-02-08
Revised:
2021-06-20
Online:
2021-08-31
Published:
2021-09-09
Contact:
Xiaofan YANG
E-mail:hujinhua@mail.bnu.edu.cn;xfyang@bnu.edu.cn
摘要:
土壤水文过程(水分运移和传热)及其对气候变化的响应是寒区水文学的前沿问题。然而,冻土的存在使得寒区土壤水文过程变得极其复杂。此外,寒区自然环境恶劣,较难获取长时间序列和高分辨率的野外观测资料。近年来,充分利用已有的观测数据,构建寒区土壤水热耦合模型,并开展相应的数值模拟研究,已成为理解寒区土壤水文物理过程,揭示其动力学机制的重要途径。基于寒区土壤水文物理过程和计算流体力学方法,构建了高分辨率、适用于完全饱和状态下的寒区土壤水热耦合模型,且自主研发了相应的数值求解器和软件包。随后,通过一系列完全饱和状态下的验证算例,如经典的一维传热方程解析解、被广泛应用的二维基准测试算例和室内土柱冻结实验等,对已构建的模型进行了系统的检验。模型模拟结果与解析解、基准算例的结果以及实验数据相比,均有较好的一致性,表明该模型较为准确且高效地模拟了寒区土壤在完全饱和状态下的水分运移和传热过程,尤其能够精细刻画冻土水-冰相态变化等关键过程,有望成为研究寒区土壤水文过程的有力工具。
中图分类号:
胡锦华, 陆峥, 仝金辉, 李小雁, 刘绍民, 杨晓帆. 基于计算流体力学的寒区土壤水热耦合模型研究[J]. 冰川冻土, 2021, 43(4): 948-963.
Jinhua HU, Zheng LU, Jinhui TONG, Xiaoyan LI, Shaomin LIU, Xiaofan YANG. Simulating thermo-hydrologic processes in cold region soil system: a computational fluid dynamics study[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 948-963.
表1
模型参数"
参数 | 单位 | 定义 | 参数 | 单位 | 定义 |
---|---|---|---|---|---|
λw | W·m-1·K-1 | 水的导热率 | Kw | m·s-1 | 导水率 |
λi | W·m-1·K-1 | 冰的导热率 | ρw | kg·m-3 | 水的密度 |
λs | W·m-1·K-1 | 土壤颗粒的导热率 | ρi | kg·m-3 | 冰的密度 |
λt | W·m-1·K-1 | 总导热率 | ρs | kg·m-3 | 土壤颗粒的密度 |
Cw | J·kg-1·K-1 | 水的比热容 | W | 冻结特征曲线的拟合参数 | |
Ci | J·kg-1·K-1 | 冰的比热容 | Kint | m2 | 固有渗透系数 |
Cs | J·kg-1·K-1 | 土壤颗粒的比热容 | Ω | 阻抗系数 | |
β | m·s-2·kg-1 | 多孔介质压缩系数 | θi | 固态含冰量 | |
μ | kg·m-1·s-1 | 水的动力黏度 | θw | 液态含水量 | |
θr | 残余含水量 | T | K | 温度 | |
z | m | 向上的垂直坐标 | h | m | 压力水头 |
ε | 孔隙度 | P | Pa | 压力 | |
L | J·kg-1 | 融化潜热 | m·s-1 | 速度 | |
g | m·s-2 | 重力加速度 | t | s | 时间 |
表4
darcyTHFOAM与其他模型或软件数值算法和网格离散方法的比较"
模型 | darcyTHFOAM | Cast3M | permaFOAM | COMSOL | DarcyTools |
---|---|---|---|---|---|
数值算法 | 有限体积法 | 有限体积法 | 有限体积法 | 有限元法 | 有限体积法 |
网格数量 | 30 000 | 31 609 | 480 000 | 35 000 | 14 786 |
网格类型 | 六面体 | 四边形 | 六面体 | 四边形 | 笛卡尔网格 |
计算区域 | 全部 | 一半 | 全部 | 全部 | 全部 |
并行计算 | 支持, 1~1 000核 | 不支持 | 支持, 100~1 000核 | 共享内存, 8核 | 支持, 64核 |
时间步长 策略 | 自适应调整 时间步长 | 指定时间 步长 | 自适应调整 时间步长 | 自适应调整 时间步长 | 指定时间 步长 |
文献来源 | 本研究 | www-cast3m.cea.fr | [ | www.comsol.com/comsol-multiphysics | [ |
1 | Qin Dahe, Yao Tandong, Ding Yongjian, et al. Introduction to cryospheric science[M]. Beijing: Science Press, 2017. |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017. | |
2 | Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. |
3 | Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790): 364-369. |
4 | Ming-ko Woo. Permafrost hydrology[M]. Berlin: Springer, 2012. |
5 | Gao Hongkai, Wang Jingjing, Yang Yuzhong, et al. Permafrost hydrology of the Qinghai-Tibet Plateau: a review of processes and modeling[J/OL]. Frontiers in Earth Science, 2021, 8 [2021-06-06]. . |
6 | Ding Yongjian, Zhang Shiqiang, Chen Rensheng, et al. Hydrological basis and discipline system of cryohydrology: from a perspective of cryospheric science[J/OL]. Frontiers in Earth Science, 2020, 8 [2021-06-06]. . |
7 | Wang Genxu, Lin Shan, Hu Zhaoyong, et al. Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau[J/OL]. Journal of Geophysical Research: Atmospheres, 2020, 125 [2021-06-06]. . |
8 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. | |
9 | IPCC. Summary for policymakers[R/OL] // IPCC special report on the ocean and cryosphere in a changing climate. Geneva, Switzerland: IPCC, 2019 [2021-06-06]. . |
10 | Ding Yongjian, Mu Cuicui, Wu Tonghua, et al. Increasing cryospheric hazards in a warming climate[J/OL]. Earth-Science Reviews, 2020, 213 [2021-06-06]. . |
11 | McKenzie J M, Kurylyk B L, Walvoord M A, et al. Invited perspective: what lies beneath a changing arctic?[J]. The Cryosphere, 2021, 15(1): 479-484. |
12 | Lemieux J M, Fortier R, Murray R, et al. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada)[J]. Hydrogeology Journal, 2020, 28(3): 833-851. |
13 | Chen Rensheng, Wang Guanxing, Yang Yong, et al. Effects of cryospheric change on alpine hydrology: combining a model with observations in the upper reaches of the Hei River, China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 3414-3442. |
14 | Wang Genxu, Mao Tianxu, Chang Juan, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550: 307-317. |
15 | Nitze I, Grosse G, Jones B M, et al. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic[J/OL]. Nature Communications, 2018, 9(1) [2021-06-06]. . |
16 | Chang Juan, Wang Genxu, Guo Linmao. Simulation of soil thermal dynamics using an artificial neural network model for a permafrost alpine meadow on the Qinghai-Tibetan Plateau[J]. Permafrost and Periglacial Processes, 2019, 30(3): 195-207. |
17 | Wang Qingfeng, Zhang Tingjun, Wu Jichun, et al. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 19-29. |
王庆峰, 张廷军, 吴吉春, 等. 祁连山区黑河上游多年冻土分布考察[J]. 冰川冻土, 2013, 35(1): 19-29. | |
18 | Zhao Lin, Zou Defu, Hu Guojie, et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 395-405. |
19 | Zhao Lin, Sheng Yu. Permafrost changes on Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2019. |
赵林, 盛煜. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019. | |
20 | Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795. |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. | |
21 | Kurylyk B L, Macquarrie K T B, McKenzie J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334. |
22 | Bense V F, Ferguson G, Kooi H. Evolution of shallow groundwater flow systems in areas of degrading permafrost[J/OL]. Geophysical Research Letters, 2009, 36(22) [2021-06-06]. . |
23 | Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost: a review[J/OL]. Vadose Zone Journal, 2016, 15(6) [2021-06-06]. . |
24 | St. Jacques J-M, SauchynD J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada[J/OL]. Geophysical Research Letters, 2009, 36(1) [2021-06-06]. . |
25 | Rennermalm A K, Wood E F, Troy T J. Observed changes in pan-arctic cold-season minimum monthly river discharge[J]. Climate Dynamics, 2010, 35(6): 923-939. |
26 | Somers L D, McKenzie J M. A review of groundwater in high mountain environments[J/OL]. WIREs Water, 2020, 7(6) [2021-06-06]. . |
27 | Turetsky M R, Abbott B W, Jones M C, et al. Carbon release through abrupt permafrost thaw[J]. Nature Geoscience, 2020, 13(2): 138-143. |
28 | Wang Taihua, Yang Dawen, Yang Yuting, et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau[J/OL]. Science Advances, 2020, 6(19) [2021-06-06]. . |
29 | Song Xiaoyan, Wang Genxu, Fan Fei, et al. Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest[J/OL]. Geoderma, 2020, 357 [2021-06-06]. . |
30 | Walvoord M A, Voss C I, Ebel B A, et al. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon[J/OL]. Environmental Research Letters, 2019, 14(1) [2021-06-06]. . |
31 | Karra S, Painter S L, Lichtner P C. Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0)[J]. The Cryosphere, 2014, 8(5): 1935-1950. |
32 | Burt T P, Mcdonnell J J. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses[J]. Water Resources Research, 2015, 51(8): 5919-5928. |
33 | Che Tao, Li Xin, Liu Shaomin, et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J]. Earth System Science Data, 2019, 11(3): 1483-1499. |
34 | Schilling O S, Park Y, Therrien R, et al. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw[J]. Groundwater, 2019, 57(1): 63-74. |
35 | Ding Yongjian, Zhang Shiqiang, Chen Rensheng. Introduction to hydrology in cold regions[M]. Beijing: Science Press, 2017. |
丁永建, 张世强, 陈仁升. 寒区水文导论[M]. 北京: 科学出版社, 2017. | |
36 | Yang Meixue, Wang Xuejia, Pang Guojin, et al. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 2019, 190: 353-369. |
37 | Bui M T, Lu Jinmei, Nie Linmei. A review of hydrological models applied in the permafrost-dominated arctic region[J/OL]. Geosciences, 2020, 10(10) [2021-06-06]. . |
38 | Lamontagne-Hallé P, McKenzie J M, Kurylyk B L, et al. Guidelines for cold-regions groundwater numerical modeling[J/OL]. WIREs Water, 2020, 7(6) [2021-06-06]. . |
39 | Yang Dawen, Gao Bing, Jiao Yang, et al. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River[J]. Science China: Earth Sciences, 2015, 58(1): 36-45. |
40 | Tian Yong, Zheng Yi, Han Feng, et al. A comprehensive graphical modeling platform designed for integrated hydrological simulation[J]. Environmental Modelling & Software, 2018, 108: 154-173. |
41 | Marsh C B, Pomeroy J W, Wheater H S. The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model-design and overview[J]. Geoscientific Model Development, 2020, 13(1): 225-247. |
42 | Li Hongyi, Li Xin, Yang Dawen, et al. Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale[J]. Journal of Geophysical Research: Atmospheres, 2019, 124: 8874-8895. |
43 | Hamman J J, Nijssen B, Bohn T J, et al. The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility[J]. Geoscientific Model Development, 2018, 11: 3481-3496. |
44 | Wang Lei, Zhou Jing, Qi Jia, et al. Development of a land surface model with coupled snow and frozen soil physics[J]. Water Resources Research, 2017, 53(6): 5085-5103. |
45 | Song Lei, Wang Lei, Li Xiuping, et al. Improving permafrost physics in a distributed cryosphere-hydrology model and its evaluations at the upper Yellow River basin[J/OL]. Journal of Geophysical Research: Atmospheres, 2020, 125(18) [2021-06-06]. . |
46 | Wang Lei, Li Xiuping, Zhou Jing, et al. Hydrological modelling over the Tibetan Plateau: current status and perspective[J]. Advances in Earth Science, 2014, 29(6): 674-682. |
王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682. | |
47 | Yu Lianyu, Zeng Yijian, Su Zhongbo. Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities[J]. Hydrology and Earth System Sciences, 2020, 24(10): 4813-4830. |
48 | Ye Renzheng, Chang Juan. Study of groundwater in permafrost regions of China: status and process[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 183-196. |
叶仁政, 常娟. 中国冻土地下水研究现状与进展综述[J]. 冰川冻土, 2019, 41(1): 183-196. | |
49 | Grenier C, Anbergen H, Bense V, et al. Groundwater flow and heat transport for systems undergoing freeze-thaw: intercomparison of numerical simulators for 2D test cases[J]. Advances in Water Resources, 2018, 114: 196-218. |
50 | Evans S G, Godsey S E, Rushlow C R, et al. Water tracks enhance water flow above permafrost in upland Arctic Alaska hillslopes[J/OL]. Journal of Geophysical Research: Earth Surface, 2020, 125(2) [2021-06-06]. . |
51 | Evans S G, Ge Shemin. Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes[J]. Geophysical Research Letters, 2016, 44: 1803-1813. |
52 | McKenzie J M, Voss C I. Permafrost thaw in a nested groundwater-flow system[J]. Hydrogeology Journal, 2013, 21(1): 299-316. |
53 | Huang Kewei, Dai Junchen, Wang Genxu, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(6): 1475-1488. |
54 | Diersch H O G. FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin: Springer, 2014. |
55 | Jan A, Coon E T, Painter S L. Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site[J]. Geoscientific Model Development, 2020, 13(5): 2259-2276. |
56 | Atchley A L, Painter S L, Harp D R, et al. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)[J]. Geoscientific Model Development, 2015, 8(9): 2701-2722. |
57 | Cochand F, Therrien R, Lemieux J M. Integrated hydrological modeling of climate change impacts in a snow-influenced catchment[J]. Groundwater, 2019, 57(1): 3-20. |
58 | Therrien R. HydroGeoSphere: a three-dimensional numerical model describing fully-integrated sub-surface and surface flow and solute transport[M]. Waterloo, Ontario, Canada: University of Waterloo, 2017. |
59 | Kurylyk B L, Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177. |
60 | The OpenFOAM Foundation. OpenFOAM user guide[EB/OL]. [2021-06-06]. . |
61 | Mortensen M, Langtangen H P, Wells G N. A FEniCS-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations[J]. Advances in Water Resources, 2011, 34(9): 1082-1101. |
62 | Miller C T, Dawson C N, Farthing M W, et al. Numerical simulation of water resources problems: models, methods, and trends[J]. Advances in Water Resources, 2013, 51: 405-437. |
63 | Yang Xiaofan, Mehmani Y, Perkins W A, et al. Intercomparison of 3D pore-scale flow and solute transport simulation methods[J]. Advances in Water Resources, 2016, 95: 176-189. |
64 | Orgogozo L, Prokushkin A S, Pokrovsky O S, et al. Water and energy transfer modeling in a permafrost-dominated, forested catchment of Central Siberia: the key role of rooting depth[J]. Permafrost and Periglacial Processes, 2019, 30(2): 75-89. |
65 | Horgue P, Soulaine C, Franc J, et al. An open-source toolbox for multiphase flow in porous media[J]. Computer Physics Communications, 2015, 187: 217-226. |
66 | Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media[M]. Berlin: Springer, 1990. |
67 | Sharp J J, Simmons C T. The compleat Darcy: new lessons learned from the first English translation of Les Fontaines Publiques de la Ville de Dijon[J]. Ground Water, 2005, 43(3): 457-460. |
68 | McKenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources, 2007, 30(4): 966-983. |
69 | Jame Y W, Norum D I. Heat and mass transfer in a freezing unsaturated porous medium[J]. Water Resources Research, 1980, 16(4): 811-819. |
70 | Hu Guojie, Zhao Lin, Zhu Xiaofan, et al. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil[J/OL]. Geoderma, 2020, 368 [2021-06-06]. . |
71 | Orgogozo L, Renon N, Soulaine C, et al. An open source massively parallel solver for Richards equation: mechanistic modelling of water fluxes at the watershed scale[J]. Computer Physics Communications, 2014, 185(12): 3358-3371. |
72 | Weill S, Mouche E, Patin J. A generalized Richards equation for surface/subsurface flow modelling[J]. Journal of Hydrology, 2009, 366(1/2/3/4): 9-20. |
73 | Šimůnek J, van Genuchten M T, Šejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 2008, 7(2): 587-600. |
74 | Williams G A, Miller C T. An evaluation of temporally adaptive transformation approaches for solving Richards’ equation[J]. Advances in Water Resources, 1999, 22(8): 831-840. |
75 | Lunardini V J. Heat transfer with freezing and thawing[M]. New York: Elsevier, 1991. |
76 | M-k Woo, Arain M A, Mollinga M, et al. A two-directional freeze and thaw algorithm for hydrologic and land surface modelling[J/OL]. Geophysical Research Letters, 2004, 31(12) [2021-06-06]. . |
77 | Rowland J C, Travis B J, Wilson C J. The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost[J/OL]. Geophysical Research Letters, 2011, 38(17) [2021-06-06]. . |
78 | Bense V F, Kooi H, Ferguson G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J/OL]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3) [2021-06-06]. . |
79 | Wellman T P, Voss C I, Walvoord M A. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)[J]. Hydrogeology Journal, 2013, 21(1): 281-298. |
80 | Jafarov E E, Coon E T, Harp D R, et al. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape[J/OL]. Environmental Research Letters, 2018, 13(10) [2021-06-06]. . |
81 | Svensson U, Ferry M. DarcyTools: a computer code for hydrogeological analysis of nuclear waste repositories in fractured rock[J]. Journal of Applied Mathematics and Physics, 2014, 2(6): 365-383. |
82 | Mizoguchi M. Water, heat and salt transport in freezing soil[D]. Tokyo, Japan: University of Tokyo, 1990. |
83 | Hansson K, Šimůnek J, Mizoguchi M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications[J]. Vadose Zone Journal, 2004, 3(2): 693-704. |
84 | Mochizuki H, Mizoguchi M, Miyazaki T. Effects of NaCl concentration on the thermal conductivity of sand and glass beads with moisture contents at levels below field capacity[J]. Soil Science and Plant Nutrition, 2008, 54(6): 829-838. |
[1] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[2] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[3] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[4] | 刘文惠, 谢昌卫, 刘海瑞, 庞强强, 王武, 刘广岳, 杨雨昆, 王铭, 张琪. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土, 2022, 44(1): 327-339. |
[5] | 解邦龙, 张吾渝, 孙翔龙, 刘乐青, 刘成奎. 不同温控曲线对石灰改良黄土强度影响研究[J]. 冰川冻土, 2022, 44(1): 262-274. |
[6] | 王飞, 李国玉, 马巍. 多年冻土区输油管道-管周冻土热力相互作用研究进展[J]. 冰川冻土, 2022, 44(1): 217-228. |
[7] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[8] | 杜冉, 彭小清, 金浩东, 魏庆, 孙文, 贾诗超, 范成彦, 王昆, 魏思浩, 赵耀华, FRAUENFELD Oliver W.. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188-202. |
[9] | 李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903. |
[10] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[11] | 柴明堂,马巍,穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808. |
[12] | 何成旦, 李亚胜, 温智, 王永瑞, 张霄, 金龙, 殷子涵, 权素君. 月球极区冻结模拟月壤物理力学特性研究[J]. 冰川冻土, 2021, 43(6): 1773-1781. |
[13] | 王萍,赵慧颖,闫平,朱海霞,翟墨,李秀芬. 黑龙江省土壤冻融期气象要素变化特征[J]. 冰川冻土, 2021, 43(6): 1764-1772. |
[14] | 焦志平,江利明,牛富俊,郭瑞,周志伟. 藏东冻土区滑坡形变时序InSAR监测分析[J]. 冰川冻土, 2021, 43(5): 1312-1322. |
[15] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000