1 |
Morlighem M, Williams C N, Rignot E, et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation[J]. Geophysical Research Letters, 2017, 44(21): 11051-11061.
|
2 |
Moon T, Joughin I, Smith B, et al. 21st-century evolution of Greenland outlet glacier velocities[J]. Science, 2012, 336(6081): 576-578.
|
3 |
Moon T, Joughin I, Smith B, et al. Distinct patterns of seasonal Greenland glacier velocity[J]. Geophysical Research Letters, 2014, 41(20): 7209-7216.
|
4 |
Rignot E, Kanagaratnam P. Changes in the velocity structure of the Greenland Ice Sheet[J]. Science, 2006, 311(5763): 986-990.
|
5 |
Dowdeswell J A, Benham T J, Strozzi T, et al. Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard[J/OL]. Journal of Geophysical Research: Earth Surface, 2008, 113(F3) [2021-05-19]. .
|
6 |
Berthier E, Vadon H, Baratoux D, et al. Surface motion of mountain glaciers derived from satellite optical imagery[J]. Remote Sensing of Environment, 2005, 95(1): 14-28.
|
7 |
Haug T, Kääb A, Skvarca P. Monitoring ice shelf velocities from repeat MODIS and Landsat data: a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica[J]. The Cryosphere, 2010, 4(2): 161-178.
|
8 |
Kääb A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya[J]. Remote Sensing of Environment, 2005, 94(4): 463-474.
|
9 |
Scambos T A, Dutkiewicz M J, Wilson J C, et al. Application of image cross-correlation to the measurement of glacier velocity using satellite image data[J]. Remote Sensing of Environment, 1992, 42(3): 177-186.
|
10 |
Heid T, Kääb A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J]. Remote Sensing of Environment, 2012, 118(15): 339-355.
|
11 |
Erten E, Reigber A, Hellwich O, et al. Glacier velocity monitoring by maximum likelihood texture tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 394-405.
|
12 |
Wang Xin, Liu Qionghuan, Jiang Lianghong, et al. Characteristics and influence factors of glacier surface flow velocity in the Everest region, the Himalayas derived from ALOS/PALSAR images[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 570-579.
|
|
王欣, 刘琼欢, 蒋亮虹, 等. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析[J]. 冰川冻土, 2015, 37(3): 570-579.
|
13 |
Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Monitoring displacement of Laohugou Glacier No. 12 based on Landsat 8 and TerraSAR-X images[J]. Journal of Remote Sensing, 2018, 22(1): 153-160.
|
|
张晓博, 赵学胜, 葛大庆, 等. 利用Landsat 8和TerraSAR-X影像研究老虎沟12号冰川运动特征[J]. 遥感学报, 2018, 22(1): 153-160.
|
14 |
Wang Qun. Application of DInSAR and offset tracking techniques in monitoring mountain glacier velocity[D]. Beijing: China University of Geosciences (Beijing), 2018.
|
|
王群. DInSAR和偏移量跟踪技术在山地冰川流速监测中的应用[D]. 北京: 中国地质大学(北京), 2018.
|
15 |
Strozzi T, Luckman A, Murray T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2384-2391.
|
16 |
Sun Yongling, Jiang Liming, Liu Lin, et al. Surface flow velocity of mountain glaciers derived from Landsat-7 ETM+ SLC-OFF images: extraction and quantitative evaluation: a case study of the Siachen Glacier in the Karakoram[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 596-603.
|
|
孙永玲, 江利明, 柳林, 等. 基于Landsat-7 ETM+ SLC-OFF影像的山地冰川流速提取与评估: 以Karakoram锡亚琴冰川为例[J]. 冰川冻土, 2016, 38(3): 596-603.
|
17 |
Wang Qun, Zhang Yunling, Fan Jinghui, et al. Monitoring the motion of the Yiga Glacier using GF-3 images[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 460-466.
|
|
王群, 张蕴灵, 范景辉, 等. 利用高分三号影像监测依嘎冰川表面运动[J]. 武汉大学学报(信息科学版), 2020, 45(3): 460-466.
|
18 |
Zhao Jiarui, Ke Changqing. Flow velocity of the Pine Island Glacier, West Antarctica, derived from Sentinel-1 SAR data[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 12-18.
|
|
赵家锐, 柯长青. 基于Sentinel-1 SAR数据的南极松岛冰川流速监测[J]. 冰川冻土, 2019, 41(1): 12-18.
|
19 |
Wang Sisheng, Jiang Liming, Sun Yongling, et al. Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images: a case study of Skyang Glacier in central Karakoram[J]. Remote Sensing for Land & Resources, 2016, 28(2): 54-61.
|
|
王思胜, 江利明, 孙永玲, 等. 基于ALOS PALSAR数据的山地冰川流速估算方法比较: 以喀喇昆仑地区斯克洋坎力冰川为例[J]. 国土资源遥感, 2016, 28(2): 54-61.
|
20 |
Wang Qun, Fan Jinghui, Zhou Wei, et al. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
|
|
王群, 范景辉, 周伟, 等. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
|
21 |
Deng Fanghui, Zhou Chunxia, Wang Zemin, et al. Ice-flow velocity derivation of the confluence zone of the Amery ice shelf using offset-tracking method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 901-906.
|
|
邓方慧, 周春霞, 王泽民, 等. 利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J]. 武汉大学学报(信息科学版), 2015, 40(7): 901-906.
|
22 |
Heid T, Kääb A. Repeat optical satellite images reveal widespread and long-term decrease in land-terminating glacier speeds[J]. The Cryosphere, 2012, 6(2): 467-478.
|
23 |
Li Yi, Yan Shiyong, Li Zhiguo, et al. The flow state of South Inylche Glacier in the Tianshan Mountain in 2016: extraction and analysis based on Landsat-8 OLI image[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1281-1288.
|
|
李毅, 闫世勇, 李治国, 等. 基于Landsat-8 OLI影像的天山南伊内里切克冰川2016年冰川表面运动状态提取与分析[J]. 冰川冻土, 2017, 39(6): 1281-1288.
|
24 |
Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of Karayaylak Glacier in Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 11-20.
|
|
张震, 刘时银, 魏俊锋, 等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土, 2016, 38(1): 11-20.
|
25 |
Niu Muye, Zhou Chunxia, Liu Tingting. Derivation of ice-flow velocity of Polar Record Glacier using an improved NCC algorithm[J]. Chinese Journal of Polar Research, 2016, 28(2): 243-249.
|
|
牛牧野, 周春霞, 刘婷婷. 基于改进NCC算法的东南极极记录冰川流速提取研究[J]. 极地研究, 2016, 28(2): 243-249.
|
26 |
Joughin I, Smith B, Howat I, et al. Greenland flow variability from ice-sheet-wide velocity mapping[J]. Journal of Glaciology, 2010, 56(197): 415-430.
|
27 |
Joughin I, Sarah B D, Matt A K, et al. Seasonal speedup along the western flank of the Greenland Ice Sheet[J]. Science, 2008, 320(5877): 781-783.
|
28 |
Rignot E, Braaten D, Gogineni S P, et al. Rapid ice discharge from southeast Greenland glaciers[J]. Geophysical Research Letters, 2004, 31(10): 377-393.
|
29 |
Pablo S G, Navarro F. Glacier surface velocity retrieval using DInSAR and offset tracking techniques applied to ascending and descending passes of Sentinel-1 data for southern Ellesmere ice caps, Canadian Arctic[J]. Remote Sensing, 2017, 9(5): 442-459.
|
30 |
Strozzi T, Kouraev A, Wiesmann A, et al. Estimation of Arctic glacier motion with satellite L-band SAR data[J]. Remote Sensing of Environment, 2007, 112(3): 636-645.
|
31 |
Fan Hongyan. Analysis of temporal resolution of satellite remote sensing images[J]. Geomatics & Spatial Information Technology, 2019, 42(10): 37-41.
|
|
范红艳. 关于卫星遥感影像时间分辨率的解析[J]. 测绘与空间地理信息, 2019, 42(10): 37-41.
|
32 |
Dunse T, Schuler T V, Hagen J R, et al. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements[J]. The Cryosphere, 2012, 6(2): 453-466.
|
33 |
Kääb A, Lefauconnier B, Melvold K. Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data[J]. Annals of Glaciology, 2005, 42(1): 7-13.
|
34 |
Fahnestock M, Scambos T, Moon T A, et al. Rapid large-area mapping of ice flow using Landsat 8[J]. Remote Sensing of Environment, 2016, 185: 84-94.
|
35 |
Howat I. MEaSUREs Greenland ice velocity: selected glacier site velocity maps from optical images, version 3[DS/OL]. Boulder, Colorado, USA: National Snow and Ice Data Center, 1985 [2019-08-09]. .
|
36 |
Binschadler R A, Scambos T A. Satellite-image-derived velocity field of an Antarctic ice stream[J]. Science, 1991, 252(5003): 242-246.
|
37 |
Emery W J, Fowler C W, Hawkins J, et al. Fram Strait satellite image-derived ice motions[J]. Journal of Geophysical Research: Oceans, 1991, 96(C3): 4751-4768.
|
38 |
Rosenau R, Scheinert M, Dietrich R. A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery[J]. Remote Sensing of Environment, 2015, 169: 1-19.
|
39 |
Jeong S, Howat I M, Ahn Y. Improved multiple matching method for observing glacier motion with repeat image feature tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2431-2441.
|
40 |
Ahn Y, Howat I M. Efficient automated glacier surface velocity measurement from repeat images using multi-image/multichip and null exclusion feature tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 2838-2846.
|
41 |
Joughin I, Howat I, Smith B, et al. MEaSUREs Greenland ice velocity: selected glacier site velocity maps from InSAR, version 3[DS/OL]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2008 [2019-08-09]. .
|
42 |
Ahlstrøm A P, Andersen S B, Andersen M L, et al. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland Ice Sheet from continuous in situ GPS instrument[J]. Earth System Science Data, 2013, 5(2): 277-287.
|
43 |
Chen Jun, Ke Changqing. Research progress on ice velocity of Antarctic Ice Sheet[J]. Chinese Journal of Polar Research, 2015, 27(1): 115-124.
|
|
陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1): 115-124.
|
44 |
Arctic Monitoring and Assessment Programme. Snow, water, ice and permafrost in the Arctic (SWIPA) 2017[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme, 2017.
|
45 |
Wang Kang, Zhang Tingjun, Mu Cuicui, et al. From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123.
|
|
王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123.
|
46 |
Benn D I, Cowton T, Todd J, et al. Glacier calving in Greenland[J]. Current Climate Change Reports, 2017, 3(4): 282-290.
|
47 |
Luo Shusen. SST characteristics over regions of the global ocean currents[J]. Tropic Oceanology, 1987, 6(3): 78-86.
|
|
罗树森. 全球主要洋流区的海温特征[J]. 热带海洋, 1987, 6(3): 78-86.
|
48 |
Yang Kang. The progress of Greenland Ice Sheet surface ablation research[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 101-109.
|
|
杨康. 格陵兰冰盖表面消融研究进展[J]. 冰川冻土, 2013, 35(1): 101-109.
|
49 |
Sundal A V, Shepherd A, Nienow P, et al. Melt-induced speed-up of Greenland Ice Sheet offset by efficient subglacial drainage[J]. Nature, 2011, 469(7331): 521-524.
|
50 |
van de Wal R S W, Boot W, van den Broeke M R, et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet[J]. Science, 2008, 321(5885): 111-113.
|