冰川冻土 ›› 2021, Vol. 43 ›› Issue (3): 928-938.doi: 10.7522/j.issn.1000-0240.2021.0060
• • 上一篇
收稿日期:
2021-05-31
修回日期:
2021-06-03
出版日期:
2021-06-30
发布日期:
2021-07-29
通讯作者:
张建明
E-mail:lvrf@lzu.edu.cn;jmzhang@lzu.edu.cn
作者简介:
吕荣芳,青年研究员,主要从事人地关系耦合研究. E-mail: 基金资助:
Rongfang LÜ(),Wenpeng ZHAO,Xiaolei TIAN,Jianming ZHANG(
)
Received:
2021-05-31
Revised:
2021-06-03
Online:
2021-06-30
Published:
2021-07-29
Contact:
Jianming ZHANG
E-mail:lvrf@lzu.edu.cn;jmzhang@lzu.edu.cn
摘要:
生态系统服务间权衡和协同关系存在显著的空间异质性,现有研究较少从社会-生态环境的角度进行分析,难以对将生态系统服务纳入实际政策制定过程中。以祁连山地区为研究区,利用InVEST模型和CASA模型对2019年五项调节服务(碳固定、碳储存、产水量、土壤保持和水质净化)和一项支持服务(生境质量)进行计算,结合多元回归树分析法,研究服务间关联的空间异质性及其对社会-生态环境的响应。结果显示,全区尺度上六项服务间呈协同关系,主要受到土地利用类型、降雨和植被覆盖度的影响。植被覆盖区的服务供给量整体高于无植被覆盖区。研究区可被分为5个聚类,不同聚类内服务间关联存在差异。无植被覆盖且年均降雨量低于440.2 mm的区域与植被覆盖度高于0.559的非耕地区内,服务间关联均呈显著协同,后者服务整体较高。降雨升高可促使无植被覆盖区内产水量和土壤保持与其他服务间呈权衡关系,植被覆盖度较低或耕地区内服务间关联变弱。研究成果可为生态管理和政策制定提供有效参考。
中图分类号:
吕荣芳,赵文鹏,田晓磊,张建明. 祁连山地区生态系统服务间权衡的社会-生态环境响应机制研究[J]. 冰川冻土, 2021, 43(3): 928-938.
Rongfang LÜ,Wenpeng ZHAO,Xiaolei TIAN,Jianming ZHANG. The trade-offs among ecosystem services and their response to socio-ecological environment in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 928-938.
表1
主要数据来源"
类型 | 空间分辨率 | 来源(下载网址) |
---|---|---|
土地利用 | 30 m | 国家青藏高原数据中心(http://data.tpdc.ac.cn/zh-hans) |
高程 | 30 m | ASTER GDEM数字高程数据,下载于地理空间数据云(http://www.gscloud.cn) |
土壤 | 1 000 m | 世界土壤数据库(HWSD),下载于地理空间数据云(http://www.gscloud.cn) |
植被覆盖 | 30 m | Landsat OLI影像(http://www.gscloud.cn) |
气象数据 | 45个矢量点,空间插值为30 m | 中国气象科学数据共享服务网《中国地面气候资料日值数据集》(http://data.cma.cn) |
水文数据 | 9个矢量点,空间插值为30 m | 《2020年甘肃省水资源公报》和《2020年青海省水资源公报》 |
1 | Costanza R, d’Arge R, De Groot R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260. |
2 | Wang Xiaofeng, Ma Xue, Feng Xiaoming, et al. Spatial-temporal characteristics of trade-off and synergy of ecosystem services in key vulnerable ecological areas in China[J]. Acta Ecologica Sinica, 2019, 39(20): 7344-7355. |
王晓峰, 马雪, 冯晓明, 等. 重点脆弱生态区生态系统服务权衡与协同关系时空特征[J]. 生态学报, 2019, 39(20): 7344-7355. | |
3 | Gong Jie, Xu Caixian, Yan Lingling, et al. A critical review of progresses and perspectives on ecosystem services from 1997 to 2018[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3265-3276. |
巩杰, 徐彩仙, 燕玲玲, 等. 1997—2018年生态系统服务研究热点变化与动向[J]. 应用生态学报, 2019, 30(10): 3265-3276. | |
4 | MEA, Ecosystems and human well-being: scenarios: findings of the Scenarios Working Group. 2005, Washington DC: Island Press. |
5 | Fu Q, Li B, Hou Y, et al. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: a case study in Altay Prefecture, China[J]. Science of the Total Environment, 2017, 607: 633-646. |
6 | Han Huiqing, Zhang Jiaoyan, Ma Geng, et al. Advances on impact of climate change on ecosystem services[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 184-190. |
韩会庆, 张娇艳, 马庚, 等. 气候变化对生态系统服务影响的研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 184-190. | |
7 | Daily G C, Matson P A. Ecosystem services: from theory to implementation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9455-9456. |
8 | La Notte A, D'Amato D, Makinen H, et al. Ecosystem services classification: A systems ecology perspective of the cascade framework[J]. Ecological Indicators, 2017, 74: 392-402. |
9 | Bennett E M, Peterson G D, Gordon L J. Understanding relationships among multiple ecosystem services[J]. Ecology Letters, 2009, 12(12): 1394-1404. |
10 | Arbieu U, Grünewald C, Martín-López B, et al. Mismatches between supply and demand in wildlife tourism: Insights for assessing cultural ecosystem services[J]. Ecological Indicators, 2017, 78: 282-291. |
11 | Rositano F, Bert F E, Piñeiro G, et al. Identifying the factors that determine ecosystem services provision in Pampean agroecosystems (Argentina) using a data-mining approach[J]. Environmental Development, 2018, 25: 3-11. |
12 | Hu Y, Peng J, Liu Y, et al. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: a scenario approach in Erhai Lake Basin, southwest China[J]. Science of the Total Environment, 2018, 625: 849-860. |
13 | Cord A F, Bartkowski B, Beckmann M, et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead[J]. Ecosystem Services, 2017, 28: 264-272. |
14 | Pang X, Nordstrom E M, Bottcher H, et al. Trade-offs and synergies among ecosystem services under different forest management scenarios - The LEcA tool[J]. Ecosystem Services, 2017, 28: 67-79. |
15 | Ndong G O, Therond O, Cousin I. Analysis of relationships between ecosystem services: a generic classification and review of the literature[J]. Ecosystem Services, 2020, 43: 101120. |
16 | Zhang Yushuo, Wu Dianting. Multi-scale analysis of ecosystem service trade-offs and associated influencing factors in Beijing-Tianjin-Hebei region[J]. Areal Research and Development, 2019, 38(3): 141-147. |
张宇硕, 吴殿廷, 京津冀地区生态系统服务权衡的多尺度特征与影响因素解析[J]. 地域研究与开发, 2019, 38(3): 141-147. | |
17 | Yu Yuyang, Li Jing, Zhou Zixiang, et al. Multi-scale representation of trade-offs and synergistic relationship among ecosystem services in Qinling-Daba Mountains[J]. Acta Ecologica Sinica, 2020, 40(16): 5465-5477. |
余玉洋, 李晶, 周自翔, 等. 基于多尺度秦巴山区生态系统服务权衡协同关系的表达[J]. 生态学报, 2020, 40(16): 5465-5477. | |
18 | Deng Chuxiong, Zhu Damei, Nie Xiaodong, et al. Progress of research regarding the trade-offs of ecosystem services[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1509-1522. |
邓楚雄, 朱大美, 聂小东, 等. 生态系统服务权衡最新研究进展[J]. 中国生态农业学报, 2020, 28(10): 1509-1522. | |
19 | Mouchet M A, Lamarque P, Martín-López B, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services[J]. Global Environmental Change, 2014, 28: 298-308. |
20 | Palomo I. Climate change impacts on ecosystem services in high mountain areas: a literature review[J]. Mountain Research and Development, 2017, 37(2): 179-187. |
21 | Zhang H, Fan J, Cao W, et al. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China[J]. Ecological Engineering, 2018, 116: 67-79. |
22 | Sun Yijie, Ren Zhiyuan, Hao Mengya, et al. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yan’an, Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3443-3454. |
孙艺杰, 任志远, 郝梦雅, 等. 黄土高原生态系统服务权衡与协同时空变化及影响因素——以延安市为例[J]. 生态学报, 2019, 39(10): 3443-3454. | |
23 | Li S, Li X, Dou H, et al. Integrating constraint effects among ecosystem services and drivers on seasonal scales into management practices[J]. Ecological Indicators, 2021, 125: 107425. |
24 | Mengist W, Soromessa T, Legese G. Ecosystem services research in mountainous regions: a systematic literature review on current knowledge and research gaps[J]. Science of the Total Environment, 2020, 702: 134581. |
25 | Fu Q, Hou Y, Wang B, et al. Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: a case study in Altay Prefecture, China[J]. Scientific Reports, 2018, 8(1): 12939. |
26 | Tian F, Lü Y H, Fu B J, et al. Effects of ecological engineering on water balance under two different vegetation scenarios in the Qilian Mountains, northwestern China[J]. Journal of Hydrology: Regional Studies, 2016, 5: 324-335. |
27 | Dai Sheng, Bao Guangyu, Qi Guiming, et al. Impacts of extreme climatic events under the context of climate warming on hydrology and water resources in the Qinghai Qilian Mountainss[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1053-1066. |
戴升, 保广裕, 祁贵明, 等. 气候变暖背景下极端气候对青海祁连山水文水资源的影响[J]. 冰川冻土, 2019, 41(5): 1053-1066. | |
28 | Zhang Mengxu, Liu Wei, Zhu Meng, et al. Responses of soil properties and vegetation biomass to slope aspect and position in forest-steppe zone of the Qilian Mountainss[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 233-241. |
张梦旭, 刘蔚, 朱猛, 等. 祁连山森林草原带土壤属性和植被生物量对坡向和坡位的响应[J]. 冰川冻土, 2021, 43(1): 233-241. | |
29 | Wang Ya, Yang Guojing, Zhou Lihua. The vulnerability diagnosis of the pastoral area social-ecological system in northern Qilian Mountainss: a case study on the Sunan Yugur Autonomous County in Gansu Province[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 370-380. |
王娅, 杨国靖, 周立华. 祁连山北麓牧区社会-生态系统脆弱性诊断——以甘肃肃南裕固族自治县为例[J]. 冰川冻土, 2021, 43(2): 370-380. | |
30 | Gui Juan, Wang Xufeng, Li Zongxing, et al. Research on the response of vegetation change to human activities in typical cryosphere areas: taking the Qilian Mountainss as an example[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1235-1243. |
桂娟, 王旭峰, 李宗省, 等. 典型冰冻圈地区植被变化对人类活动的响应研究——以祁连山为例[J]. 冰川冻土, 2019, 41(5): 1235-1243. | |
31 | Zeng Panru, Zhang Fuping, Feng Qi, et al. Estimation of the carbon sequestration value and spatial and temporal evolution of different vegeta⁃tion ecosystems in Qilian Mountainss[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1348-1358. |
曾攀儒, 张福平, 冯起, 等. 祁连山地区不同植被生态系统固碳价值量估算及时空演变分析[J]. 冰川冻土, 2019, 41(6): 1348-1358. | |
32 | Liu Y, Zhang J, Zhou D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10): 4052-4065. |
刘洋,张军,周冬梅,等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10): 4052-4065. | |
33 | Zhang Junhua, Li Guodong, Zhongren Nan, et al. The spatial distribution of soil organic carbon storage and change under different land uses in the middle of Heihe River[J]. Scientia Geographica Sinica, 2011, 31(8): 982-988. |
张俊华, 李国栋, 南忠仁, 等. 黑河中游不同土地利用类型下土壤碳储量及其空间变化[J]. 地理科学, 2011, 31(8): 982-988. | |
34 | Lian Xihong, Qi Yuan, Wang Hongwei, et al. Spatial pattern of ecosystem services under the influence of human activities in Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1254-1263. |
连喜红, 祁元, 王宏伟, 等. 人类活动影响下的青海湖流域生态系统服务空间格局[J]. 冰川冻土, 2019, 41(5): 1254-1263. | |
35 | Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3): 413-424. |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424. | |
36 | Cong W, Sun X, Guo H, et al. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin[J]. Ecological Indicators, 2020, 112: 106089. |
37 | Redhead J W, May L, Oliver T H, et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom[J]. Science of the Total Environment, 2018, 610: 666-677. |
38 | Zhou Z X, Li J, Guo Z Z, et al. Trade-offs between carbon, water, soil and food in Guanzhong-Tianshui economic region from remotely sensed data[J]. International journal of applied earth observation and geoinformation, 2017, 58: 145-156. |
39 | Liu L, Zhang H, Gao Y, et al. Hotspot identification and interaction analyses of the provisioning of multiple ecosystem services: case study of Shaanxi Province, China[J]. Ecological Indicators, 2019, 107: 105566. |
40 | Yu Y, Li J, Zhou Z, et al. Response of multiple mountain ecosystem services on environmental gradients: How to respond, and where should be priority conservation[J]. Journal of Cleaner Production, 2021, 278: 123264. |
41 | Li Xia, Zhu Wanze, Sun Shouqin, et al. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China[J]. Biodiversity Science, 2020, 28(2): 117-127. |
李霞, 朱万泽, 孙守琴, 等. 大渡河中游干暖河谷区生境对植物群落分布格局和多样性的影响[J]. 生物多样性, 2020, 28(2): 117-127. | |
42 | Xu X, Bo J, Yan T, et al. Lake-wetland ecosystem services modeling and valuation: progress, gaps and future directions[J]. Ecosystem Services, 2018, 33: 19-28. |
43 | Gao Jiangbo, Zuo Liyuan, Wang Huan. The spatial trade-offs and differentiation characteristics of ecosystem services in karst peak-cluster depression[J]. Acta Ecologica Sinica, 2019, 39(21): 7829-7839. |
高江波, 左丽媛, 王欢. 喀斯特峰丛洼地生态系统服务空间权衡度及其分异特征[J]. 生态学报, 2019, 39(21): 7829-7839. | |
44 | Torell G L, Lee K D. Impact of climate change on livestock returns and rangeland ecosystem sustainability in the southwest[J]. Agricultural and Resource Economics Review, 2018, 47(2): 336-356. |
45 | Bhardwaj A, Misra V, Mishra A, et al. Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model[J]. Climatic Change, 2018, 147(1/2): 133-147. |
46 | Li X, Yu X, Wu K, et al. Land-use zoning management to protecting the Regional Key Ecosystem Services: a case study in the city belt along the Chaobai River, China[J]. Science of the Total Environment, 2021, 762: 143-167. |
47 | Sun Y, Hao R F, Qiao J M, et al. Function zoning and spatial management of small watersheds based on ecosystem disservice bundles[J]. Journal of Cleaner Production, 2020, 255: 120285. |
48 | Li Qi, Zhu Jianhua, Xiao Wenfa. Relationships and trade-offs between, and management of biodiversity and ecosystem services[J]. Acta Ecologica Sinica, 2019, 39(8): 2655-2666. |
李奇, 朱建华, 肖文发. 生物多样性与生态系统服务——关系、权衡与管理[J]. 生态学报, 2019, 39(8): 2655-2666. | |
49 | Trodahl M I, Jackson B M, Deslippe J R, et al. Investigating trade-offs between water quality and agricultural productivity using the Land Utilisation and Capability Indicator (LUCI)-A New Zealand application[J]. Ecosystem Services, 2017, 26: 388-399. |
50 | Balbi S, Prado A D, Gallejones P, et al. Modeling trade-offs among ecosystem services in agricultural production systems[J]. Environmental Modelling & Software, 2015, 72: 314-326. |
51 | Liu L, Wang Z, Wang Y, et al. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: a case study in the Taihang Mountains[J]. Ecological Indicators, 2019, 103: 94-104. |
52 | Seidl R, Albrich K, Erb K, et al. What drives the future supply of regulating ecosystem services in a mountain forest landscape[J]. Forest Ecology and Management, 2019, 445: 37-47. |
53 | Willcock S, Martínez-López J, Hooftman D A P, et al. Machine learning for ecosystem services[J]. Ecosystem Services, 2018, 33: 165-174. |
54 | Landuyt D, Broekx S, D’hondt R, et al. A review of Bayesian belief networks in ecosystem service modelling[J]. Environmental Modelling & Software, 2013, 46: 1-11. |
[1] | 尚海洋,寇莹,宋妮妮. 干旱区内陆河流域农户生态补偿支付意愿的空间异质性分析[J]. 冰川冻土, 2020, 42(4): 1376-1383. |
[2] | 曾攀儒, 张福平, 冯起, 魏永芬, 黄良红, 李玲. 祁连山地区不同植被生态系统固碳价值量估算及时空演变分析[J]. 冰川冻土, 2019, 41(6): 1348-1358. |
[3] | 连喜红, 祁元, 王宏伟, 张金龙, 杨瑞. 人类活动影响下的青海湖流域生态系统服务空间格局[J]. 冰川冻土, 2019, 41(5): 1254-1263. |
[4] | 苏芳, 尚海洋, 张志强. 1980-2010年石羊河流域生态服务类型变化与分析[J]. 冰川冻土, 2017, 39(4): 917-925. |
[5] | 韩晔, 周忠学. 西安市农业生态系统服务间关系及空间分异[J]. 冰川冻土, 2016, 38(5): 1447-1458. |
[6] | 王晓峰, 薛亚永, 张园. 基于地形梯度的陕西省生态系统服务价值评估[J]. 冰川冻土, 2016, 38(5): 1432-1439. |
[7] | 姚娟. 新疆大喀纳斯旅游区游客的生态系统服务消耗研究[J]. 冰川冻土, 2016, 38(3): 853-863. |
[8] | 陈文业, 赵明, 张继强, 李广宇, 吴三雄, 袁海峰, 窦英杰, 吴婷, 陈旭, 罗文莉, 朱丽, 邴丹珲, 冯颖, 孙飞达, 谈嫣蓉. 敦煌西湖荒漠-湿地生态系统植被与土壤水分空间异质性研究[J]. 冰川冻土, 2015, 37(6): 1670-1679. |
[9] | 吴雪娇, 周剑, 李妍, 潘晓多, 周彦召. 基于涡动相关仪验证的SEBS模型对黑河中游地表蒸散发的估算研究[J]. 冰川冻土, 2014, 36(6): 1538-1547. |
[10] | 尹小娟, 宋晓谕, 蔡国英. 湿地生态系统服务估值研究进展[J]. 冰川冻土, 2014, 36(3): 759-766. |
[11] | 尚海洋,苏 芳,徐中民,等. 生态补偿的研究进展及其启示[J]. 冰川冻土, 2011, 33(6): 1435-1443. |
[12] | 石惠春;王芳;柏玉芬;孙宏山;艾静文;胡青云. 石羊河流域下游生态系统服务功能价值的评估[J]. 冰川冻土, 2009, 31(6): 1195-1200. |
[13] | 冉有华;李新. 基于块克里金的土壤水分点观测向像元尺度的尺度上推研究[J]. 冰川冻土, 2009, 31(2): 275-283. |
[14] | 吴吉春;盛煜;吴青柏;李金平. 祁连山首次发现冰楔假形及其意义[J]. 冰川冻土, 2008, 30(4): 595-598. |
[15] | 王建, 祁元, 陈正华, 马明国, 李净, 黄春林. 基于遥感技术的生态系统服务价值动态评估模型研究[J]. 冰川冻土, 2006, 28(5): 739-747. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000