1 |
Qiu J. The third pole[J]. Nature, 2008, 454(7203): 393-396.
|
2 |
Ma Yaoming, Ma Weiqiang, Zhong Lei, et al. Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific Reports, 2017, 7: 44574.
|
3 |
Li Wenkai, Guo Weidong, Qiu Bo, et al. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J]. Nature Communications, 2018, 9(1): 1-9.
|
4 |
Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
|
5 |
Wu Xiaobo, Zhuotong Nan, Zhao Shuping, et al. Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2018.
|
6 |
Wu Shaohong, Yin Yunhe, Zheng Du, et al. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 2005, 60(1): 3-11.
|
|
吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势[J]. 地理学报, 2005, 60(1): 3-11.
|
7 |
Ran Youhua, Li Xin, Cheng Guodong. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J]. The Cryosphere, 2018, 12(2): 595-608.
|
8 |
Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences Discussions, 2002, 6(1): 85-99.
|
9 |
Yang Meixue, Yao Tandong, Nozomu Hirose, et al. Diurnal freeze-thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Science Bulletin, 2006, 51(16): 1974-1976.
|
|
杨梅学, 姚檀栋, Nozomu Hirose, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1974-1976.
|
10 |
Gu Lianglei, Yao Jimin, Hu Zeyong, et al. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 2015, 153: 553-564.
|
11 |
Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation[J]. Journal of Geophysical Research, 2003, 108(D22): 8860.
|
12 |
Urakawa R, Shibata H, Kuroiwa M, et al. Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout theJapanese archipelago[J]. Soil Biology & Biochemistry, 2014, 74: 82-94.
|
13 |
Knox J C. Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley[J]. Catena, 2001, 42(2/3/4): 193-224.
|
14 |
Niu Guoyue, Yang Zongliang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 2006, 7(5): 937-952.
|
15 |
Henry H. Soil freezing dynamics in a changing climate: implications for agriculture[C]//Imai R, Yoshida M, Matsumoto N. Plant and microbe adaptations to cold in a changing world. New York: Springer, 2013.
|
16 |
Guo Donglin, Wang Aihui, Li Duo, et al. Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing datasets[J]. Journal of Geophysical Research: Atmospheres, 2018.
|
17 |
Yao Jimin, Zhao Lin, Ding Yongjian, et al. Surface energy budget in the Tanggula region on the Tibetan Plateau, 2005[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 119-124.
|
|
姚济敏, 赵林, 丁永建, 等. 2005年青藏高原唐古拉地区地表能量收支状况分析[J]. 冰川冻土, 2008, 30(1): 119-124.
|
18 |
Duan Anmin, Xiao Zhixiang, Wu Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979—2014[J]. Climate Change Research, 2016, 12(5): 374-381.
|
|
段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
|
19 |
Noetzli, Jeannette, Christiansen, Hanne, Deline, P, et al. Permafrost thermal state [in "State of the Climate in 2017"][J]. Bulletin of the American Meteorological Society, 2018, 99: S20-22.
|
20 |
Cheng G, Jin H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21(1): 5-23.
|
21 |
Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research Earth Surface, 2007, 112(F2): F02S03.
|
22 |
Yang Shuhua, Wu Tonghua, Li Ren, et al. Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 43-53.
|
|
杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53.
|
23 |
Ma Yaoming, Su Zhongbo, Toshio Koike, et al. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau-from GAME/Tibet to CAMP/Tibet[J]. Physics Chemistry of the Earth Parts A/B/C, 2003, 28(1): 63-74.
|
24 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Impact of surface energy variation on thawing processes within active layer of permafrost[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1235-1242.
|
|
李韧, 赵林, 丁永建, 等. 地表能量变化对多年冻土活动层融化过程的影响[J]. 冰川冻土, 2011, 33(6): 1235-1242.
|
25 |
Liu Yang, Zhao Lin, Li Ren. Simulation of the soil water-thermal features within the active layer in Tanggula region, Tibetan Plateau, by using SHAW model [J]. Journal of Glaciology and Geocryology, 2013, 35(2): 280-290.
|
|
刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉纳粹党徒地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2): 280-290.
|
26 |
Zhu Zhilin, Sun Xiaomin, Wen Xuefa, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in ChinaFLUX[J]. Science in China, 2006, 49(2): 36-46.
|
27 |
Gerken T, Ruddell B L, Fuentes J D, et al. Investigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforest[J]. Agricultural and Forest Meteorology, 2018, 255: 92-103.
|
28 |
Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric physics[M]. Beijing: Peking University Press, 2003.
|
|
盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003.
|
29 |
Yao Jimin, Zhao Lin, Gu Lianglei, et al. The surface energy budget in the permafrost region of the Tibetan Plateau[J]. Atmospheric Research, 2011, 102(4): 394-407.
|
30 |
Jiang Hao, Cheng Guodong, Wang Keli. Analyzing and measuring the surface temperature of Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2006, 49(2): 391-397.
|
|
江灏, 程国栋, 王可丽. 青藏高原地表温度的比较分析[J]. 地球物理学报, 2006, 49(2): 391-397.
|
31 |
Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(11): 1205-1211.
|
|
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000, 45(11): 1205-1211.
|
32 |
Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing process on seasonal shift in Tibetan Plateau[J]. Mountain Research, 2002, 20(5): 553-558.
|
|
杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002, 20(5): 553-558.
|
33 |
Wu Dongxing, Li Guodong, Zhang Xi. Energy balance and closure of typical winter wheat farmland ecosystem in the north China plain[J]. Chinese Journal of Eco-Agriculture, 2017, 25(10): 1413-1422.
|
|
吴东星, 李国栋, 张茜. 华北平原典型冬小麦农田生态系统能量平衡与闭合研究[J]. 中国生态农业学报, 2017, 25(10): 1413-1422.
|
34 |
Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. The problems of surface energy balance closure: an overview and case study[J]. Advances in Earth Science, 2009, 24(7): 705-713.
|
|
王介民, 王维真, 刘绍民, 等. 近地层能量平衡闭合问题——综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.
|
35 |
McGloin R, Šigut L, Havránková K, et al. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies[J]. Agricultural and Forest Meteorology, 2018, 248: 418-431.
|
36 |
Li Quan, Zhang Xianzhou, Shi Peili, et al. Study on the energy balance closure of alpine meadow on Tibetan Plateau[J]. Journal of Natural Resources, 2008, 23(3): 391-399.
|
|
李泉, 张宪洲, 石培礼, 等. 西藏高原高寒草甸能量平衡闭合研究[J]. 自然资源学报, 2008, 23(3): 391-399.
|
37 |
Chen Boli. A study of land surface energy and water in soil freezing and thawing process and impact on regional climate of the Qinghai-Tibet Plateau[D]. Lanzhou: University of Chinese Academy of Sciences (Cold and Arid Regions Environmental and Engineering Research), 2014.
|
|
陈渤黎. 青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2014.
|
38 |
Ge Jun, Yu Ye, Li Zhengchao, et al. Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(3): 608-620.
|
|
葛骏, 余晔, 李振朝, 等. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620.
|
39 |
Li Zhengquan, Yu Guirui, Wenxuefa, et al. Evaluation of energy balance closure of ChinaFLUX observation network (ChinaFLUX)[J]. Scientia Sinica(Terrae), 2004, 34(): 46-56.
|
|
李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J]. 中国科学:地球科学, 2004, 34(): 46-56.
|
40 |
Ma Yaoming, Yao Tandong, Wang Jiemin, et al. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J]. Advances in Earth Science, 2006, 21(12): 1215-1223.
|
|
马耀明, 姚檀栋, 王介民,等. 青藏高原复杂地表能量通量研究[J]. 地球科学进展, 2006, 21(12): 1215-1223.
|
41 |
Eugster W, Rouse W R, Pielke R A, et al. Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate[J]. Global Change Biology, 2000, 6: 84-115.
|
42 |
Yang Fulin, Zhou Guangsheng. Characteristics and driving factors of energy budget over a temperate desert steppe in Inner Mongolia[J]. Acta ecologica sinica, 2010, 30(21): 5769-5780.
|
|
阳伏林, 周广胜. 内蒙古温带荒漠草原能量平衡特征及其驱动因子[J]. 生态学报, 2010, 30(21): 5769-5780.
|