1 |
Qin Dahe. Glossary of cryospheric science[M]. Beijing: China Meteorological Press, 2014.
|
|
秦大河. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014.
|
2 |
Bhambri R, Hewitt K, Kawishwar P, et al. Surge-type and surge-modified glaciers in the Karakoram[J]. Scientific Reports, 2017, 7: 15391.
|
3 |
Sevestre H, Benn D I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging[J]. Journal of Glaciology, 2015, 61(228): 646-662.
|
4 |
Farinotti D, Immerzeel W W, Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
|
5 |
Ding Yongjian, Yang Jianping, Fang Yiping, et al. Adaptation research of cryosphere change[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 11-22.
|
|
丁永建, 杨建平, 方一平, 等. 冰冻圈变化的适应框架与战略体系[J]. 冰川冻土, 2020, 42(1): 11-22.
|
6 |
Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 11-20.
|
|
张震, 刘时银, 魏俊锋, 等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土, 2016, 38(1): 11-20.
|
7 |
Hewitt K. The Karakoram Anomaly? Glacier expansion and the ‘Elevation Effect’, Karakoram Himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340.
|
8 |
Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.
|
9 |
Wang Yetang, Hou Shugui, Huai Baojuan, et al. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s[J]. Journal of Glaciology, 2018, 64(246): 624-636.
|
10 |
Goerlich F, Bolch T, Paul F. More dynamic than expected: an updated survey of surging glacier in the Pamir[J]. Earth System Science Data, 2020, 12: 3161-3176.
|
11 |
Kotlyakov V M, Osipova G B, Tsvetkov D G. Monitoring surging glaciers of the Pamirs, central Asia, from space[J]. Annals of Glaciology, 2008, 48(1): 125-134.
|
12 |
Mingyang Lü, Guo Huadong, Lu Xiancai, et al. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016[J]. The Cryosphere, 2019, 13(1): 219-236.
|
13 |
Wendt Y, Mayer C, Lambrecht A, et al. A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution Digital Elevation Models and glacier velocities[J]. Remote Sensing, 2017, 9(4): 388.
|
14 |
Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing[J]. Progress in Geography, 2018, 37(11): 1545-1554.
|
|
张震, 刘时银, 魏俊锋, 等. 东帕米尔高原昆盖山跃动冰川遥感监测研究[J]. 地理科学进展, 2018, 37(11): 1545-1554.
|
15 |
Shangguan Donghui, Liu Shiyin, Ding Yongjian, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016, 62(235): 944-953.
|
16 |
Feng Lili, Jiang Liming, Liu Lin, et al. Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies[J]. Remote Sensing for Land and Resources, 2020, 32(2): 162-169.
|
|
冯力力, 江利明, 柳林, 等. 新疆克拉牙依拉克冰川变化(1973-2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
|
17 |
Gou Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.
|
|
郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.
|
18 |
Paul F, Strozzi T, Schellenberger T, et al. The 2015 surge of Hispar Glacier in the Karakoram[J]. Remote Sensing, 2017, 9(9): 888.
|
19 |
Zhang Zhen. Mass changes of glaciers in eastern Pamir using Remote Sensing and GIS[D]. Lanzhou: University of Chinese Academy of Sciences, 2016.
|
|
张震. 基于遥感和GIS的东帕米尔高原冰川冰量变化研究[D]. 兰州: 中国科学院大学, 2016.
|
20 |
Zhou Yushan, Li Zhiwei, Li Jia, et al. Geodetic glacier mass balance (1975-1999) in the central Pamir using the SRTM DEM and KH-9 imagery[J]. Journal of Glaciology, 2019, 65(250): 309-320.
|
21 |
Shangguan Donghui, Bolch T, Ding Yongjian, et al. Mass changes of Southern and Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during 1975 and 2007 derived from remote sensing data[J]. The Cryosphere, 2015, 9(2): 703-717.
|
22 |
Gardner A S, Moholdt G, Scambos T, et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years[J]. The Cryosphere, 2018, 12(2): 521-547.
|
23 |
Gardner A S, Scambos T, Moholdt G, et al. ITS_LIVE regional glacier and ice sheet surface velocities[DB]. Data archived at National Snow and Ice Data Center, 2019. DOI: 10.5067/6II6VW8LLWJ7.
doi: 10.5067/6II6VW8LLWJ7
|
24 |
Huang Danni, Zhang Zhen, Zhang Shasha, et al. Characteristics of glacier movement in the eastern Pamir Plateau[J]. Arid Land Geography, 2021, 44(1): 131-140.
|
|
黄丹妮, 张震, 张莎莎, 等. 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021, 44(1): 131-140.
|
25 |
Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12(1): 22-27.
|
26 |
Nuimura T, Sakai A, Taniguchi K, et al. The GAMDAM glacier inventory: a quality controlled inventory of Asian glaciers[J]. The Cryosphere, 2015, 8(3): 849-864.
|
27 |
Sakai A. Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia[J]. The Cryosphere, 2019, 13(7): 2043-2049.
|
28 |
Chen An’an. Glacier mass budgets in the High Mountain Asia based on Multi-source DEMs over past 50 years[D]. Beijing: University of Chinese Academy of Sciences, 2017.
|
|
陈安安. 基于多源DEM的近50年高亚洲地区冰川物质平衡[D]. 北京: 中国科学院大学, 2017.
|
29 |
Nuth C, Kääb A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5(1): 271-290.
|
30 |
Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
|
31 |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
|
|
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
|
32 |
Xie Zichu, Liu Chaohai. Introduction to Glaciology[M]. Shanghai: Shanghai Popular Science Press, 2010.
|
|
谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010.
|
33 |
Been D I, Fowler A C, Hewitt I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716.
|
34 |
Been D I, Jones R L, Luckman A, et al. Mass and enthalpy budget evolution during the surge of a polythermal glacier: a test of theory[J]. Journal of Glaciology, 2019, 65(253): 717-731.
|
35 |
Muzinska A. Transport conditions of mountain-surging glaciers as recorded in the micromorphology of quartz grains (Medvezhiy Glacier, West Pamir)[J]. Geologos, 2015, 21(2): 127-138.
|
36 |
Lin Hui, Li Gang, Cuo Lan, et al. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014[J]. Scientific Reports, 2017, 7: 6712.
|
37 |
Quincey D J, Glasser N F, Cook S J, et al. Heterogeneity in Karakoram glacier surges[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1288-1300.
|
38 |
Burgess E W, Forster R R, Larsen C F, et al. Surge dynamics on Bering Glacier, Alaska, in 2008-2011[J]. The Cryosphere, 2012, 6(6): 1251-1262.
|
39 |
Lingle C S, Fatland R. Does englacial water storage drive temperate glacier surge?[J]. Annals of Glaciology, 2003, 36(1): 14-20.
|
40 |
Fowler A C, Murray T, Ng F. Thermally controlled glacier surging[J]. Journal of Glaciology, 2001, 47(159): 527-538.
|
41 |
Xian Liju, Mu Zhenxia, Jiang Huifang, et al. Analysis of temporal and spatial evolution characteristics of climatic factor in Tajikistan for nearly 31 years[J]. Journal of Water Resources and Water Engineering, 2015, 26(2): 44-50.
|
|
鲜丽菊, 穆振侠, 姜卉芳, 等. 塔吉克斯坦近31年气候要素时空变化特征分析[J]. 水资源与水工程学报, 2015, 26(2): 44-50.
|
42 |
Yang Xuewen, Wang Ninglian, Chen An’an, et al. The relationship between area variation of the Aral Sea in the arid Central Asia and human activities and climate change[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 681-692.
|
|
杨雪雯, 王宁练, 陈安安, 等. 中亚干旱区咸海面积变化与人类活动及气候变化的关联研究[J]. 冰川冻土, 2020, 42(2): 681-692.
|
43 |
Eisen O, Harrison W D, Raymond C F. The surges of Variegated Glacier, USA, and their connection to climate and mass balance[J]. Journal of Glaciology, 2001, 47(158): 351-358.
|