1 |
Cai Ziyi, You Qinglong, Chen Deliang, et al. Review of changes and impacts of the cryosphere under the background of rapid Arctic warming[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 902-916.
|
|
蔡子怡, 游庆龙, 陈德亮, 等. 北极快速增暖背景下冰冻圈变化及其影响研究综述[J]. 冰川冻土, 2021, 43(3): 902-916.
|
2 |
Wang Kang, Zhang Tingjun, Mu Cuicui, et al. From the Third Pole to the Arctic: changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123.
|
|
王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123.
|
3 |
Ni Dingming, Kang Shichang, Zhang Yulan, et al. Spatiotemporal distribution and potential sources of snow mercury in Arctic Alaska during the spring season[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 427-436.
|
|
倪鼎铭, 康世昌, 张玉兰, 等. 北极阿拉斯加春季积雪中汞的时空分布及其来源分析[J]. 冰川冻土, 2021, 43(2): 427-436.
|
4 |
Clark S C, Granger J, Mastorakis A, et al. An investigation into the origin of nitrate in arctic sea ice[J]. Global Biogeochemical Cycles, 2020, 34(2): e2019GB006279.
|
5 |
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
|
6 |
Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From air pollution to climate change [M]. 2nd. New Jersey: John Wiley & Sons, 2012.
|
7 |
Alexander B, Sherwen T, Holmes C D, et al. Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3859-3877.
|
8 |
Sharma S, Barrie L A, Magnusson E, et al. A factor and trends analysis of multidecadal lower tropospheric observations of arctic aerosol composition, black carbon, ozone, and mercury at alert, canada[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(24): 14133-14161.
|
9 |
Luo L, Zhu R G, Song C B, et al. Changes in nitrate accumulation mechanisms as PM2.5 levels increase on the north china plain: A perspective from the dual isotopic compositions of nitrate[J]. Chemosphere, 2021, 263: 127915.
|
10 |
Brenninkmeijer C A M, Janssen C, Kaiser J, et al. Isotope effects in the chemistry of atmospheric trace compounds[J]. Chemical Reviews, 2003, 103(12): 5125-5161.
|
11 |
Michalski G, Scott Z, Kabiling M, et al. First measurements and modeling of Δ17O in atmospheric nitrate[J]. Geophysical Research Letters, 2003, 30(16): 1870.
|
12 |
Shi G, Ma H, Zhu Z, et al. Using stable isotopes to distinguish atmospheric nitrate production and its contribution to the surface ocean across hemispheres[J]. Earth and Planetary Science Letters, 2021, 564: 116914.
|
13 |
Wang K, Hattori S, Kang S C, et al. Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the mt. Everest region[J]. Environmental Pollution, 2020, 267: 115274.
|
14 |
Lin M, Hattori S, Wang K, et al. A complete isotope (δ15N, δ18O, Δ17O) investigation of atmospherically deposited nitrate in glacial-hydrologic systems across the third pole region[J]. Journal of Geophysical Research-Atmospheres, 2020, 125(19): e2019JD031878.
|
15 |
Geng L, Murray L T, Mickley L J, et al. Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions[J]. Nature, 2017, 546(7656): 133-136.
|
16 |
Wang Y L, Song W, Yang W, et al. Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(7): 4174-4185.
|
17 |
Chan Y C, Evans M J, He P Z, et al. Heterogeneous nitrate production mechanisms in intense haze events in the north china plain[J]. Journal of Geophysical Research-Atmospheres, 2021, 126(9): e2021JD034688.
|
18 |
Kamezaki K, Hattori S, Iwamoto Y, et al. Tracing the sources and formation pathways of atmospheric particulate nitrate over the pacific ocean using stable isotopes[J]. Atmospheric Environment, 2019, 209: 152-166.
|
19 |
Savarino J, Morin S, Erbland J, et al. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17668-17673.
|
20 |
Ishino S, Hattori S, Savarino J, et al. Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at dumont d'urville, coastal antarctica[J]. Atmospheric Chemistry and Physics, 2017, 17(5): 3713-3727.
|
21 |
Savarino J, Kaiser J, Morin S, et al. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal antarctica[J]. Atmospheric Chemistry and Physics, 2007, 7(8): 1925-1945.
|
22 |
Savarino J, Vicars W C, Legrand M, et al. Oxygen isotope mass balance of atmospheric nitrate at dome c, east antarctica, during the opale campaign[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2659-2673.
|
23 |
Vicars WC, Savarino J. Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: ambient measurements from 50° N to 50° S using the nitrite-coated filter technique[J]. Geochim Cosmochim Acta, 2014, 135: 270-287.
|
24 |
Savarino J, Bhattacharya S K, Morin S, et al. The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly[J]. Journal of Chemical Physics, 2008, 128(19): 194303.
|
25 |
Berhanu T A, Savarino J, Bhattacharya S K, et al. 17O excess transfer during the NO2+O3→NO3+O2 reaction[J]. Journal of Chemical Physics, 2012, 136(4): 044311.
|
26 |
Frey M M, Savarino J, Morin S, et al. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of east antarctica and implications for reactive nitrogen cycling[J]. Atmospheric Chemistry and Physics, 2009, 9(22): 8681-8696.
|
27 |
Shi G, Buffen A M, Hastings M G, et al. Investigation of post-depositional processing of nitrate in east antarctic snow: Isotopic constraints on photolytic loss, re-oxidation, and source inputs[J]. Atmospheric Chemistry and Physics, 2015, 15(16): 9435-9453.
|
28 |
Morin S, Savarino J, Bekki S, et al. Major influence of bro on the NOx and nitrate budgets in the arctic spring, inferred from Δ17O(NO3–) measurements during ozone depletion events[J]. Environmental Chemistry, 2007, 4(4): 238-241.
|
29 |
Morin S, Savarino J, Bekki S, et al. Signature of arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry and Physics, 2007, 7: 1451-1469.
|
30 |
Morin S, Savarino J, Frey M M, et al. Comprehensive isotopic composition of atmospheric nitrate in the atlantic ocean boundary layer from 65° S to 79° N[J]. Journal of Geophysical Research-Atmospheres, 2009, 114: D05303.
|
31 |
Morin S, Savarino J, Frey M M, et al. Tracing the origin and fate of NOx in the arctic atmosphere using stable isotopes in nitrate[J]. Science, 2008, 322(5902): 730-732.
|
32 |
Kunasek S A, Alexander B, Steig E J, et al. Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland[J]. Journal of Geophysical Research-Atmospheres, 2008, 113: D24302.
|
33 |
Fibiger D L, Dibb J E, Chen D X, et al. Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport[J]. Journal of Geophysical Research-Atmospheres, 2016, 121(9): 5010-5030.
|
34 |
Jiang Z, Alexander B, Savarino J, et al. Impacts of the photo-driven post-depositional processing on snow nitrate and its isotopes at Summit, Greenland: a model-based study[J]. The Cryosphere, 2021, 15(9): 4207-4220.
|
35 |
He P Z, Bian L E, Zheng X D, et al. Observation of surface ozone in the marine boundary layer along a cruise through the arctic ocean: from offshore to remote[J]. Atmospheric Reserch, 2016, 169: 191-198.
|
36 |
Kaiser J, Hastings M G, Houlton B Z, et al. Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O[J]. Analytical Chemistry, 2007, 79(2): 599-607.
|
37 |
He P Z, Xie Z Q, Chi X Y, et al. Atmospheric Δ17O(NO3–) reveals nocturnal chemistry dominates nitrate production in Beijing haze[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14465-14476.
|
38 |
He P Z, Xie Z Q, Yu X W, et al. The observation of isotopic compositions of atmospheric nitrate in shanghai china and its implication for reactive nitrogen chemistry[J]. Science of the Total Environment, 2020, 714: 136727.
|
39 |
Burkholder J B, Sander S P, Abbatt J R B, et al. Chemical kinetics and photochemical data for use in atmospheric studies: evaluation No.18[M]. Pasadena: Jet Propulsion Laboratory, 2015.
|
40 |
Liao J, Huey L G, Tanner D J, et al. Observations of hydroxyl and peroxy radicals and the impact of bro at Summit, Greenland in 2007 and 2008[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8577-8591.
|
41 |
Sjostedt S J, Huey L G, Tanner D J, et al. Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003[J]. Atmospheric Environment, 2007, 41(24): 5122-5137.
|
42 |
Schlitzer R. Ocean data view[DB/OL]. (2018-01-01)[2021-04-22]. .
|
43 |
Alexander B, Hastings M G, Allman D J, et al. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5043-5056.
|
44 |
Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling & Software, 2009, 24(8): 938-939.
|