1 |
Hu Ruji. Snow cover and snow disaster control in China[M]. Beijing: China Environmental Science Press, 2013.
|
|
胡汝骥. 中国积雪与雪灾防治[M]. 北京: 中国环境出版社, 2013.
|
2 |
Che Tao, Hao Xiaohua, Dai Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253.
|
|
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253.
|
3 |
Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
|
4 |
Yao T, Xue Y, Chen D, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
|
5 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
|
6 |
Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Regional characteristics of glacier mass balance variations in High Asia[J]. Journal of Glaciology and Geocryology, 2000, 22 (2): 97-105.
|
|
刘时银, 丁永建, 叶佰生, 等. 高亚洲地区冰川物质平衡变化特征研究[J]. 冰川冻土, 2000, 22(2): 97-105.
|
7 |
Xie Z, Zhou Z, Li Q, et al. Progress and prospects of mass balance characteristic and responding to global change of glacier system in High Asia[J]. Advances in Earth Science, 2009, 24(10): 1065-1072.
|
8 |
Wang Xiaoru, Tang Zhiguang, Wang Jian, et al. Monitoring of snowline altitude at the end of melting season in high mountain Asia based on MODIS snow cover products[J]. Acta Geographica Sinica, 2020, 75(3): 470-484.
|
|
王晓茹, 唐志光, 王建, 等. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测[J]. 地理学报, 2020, 75(3): 470-484.
|
9 |
Tang Zhiguang, Wang Jian, Wang Xin, et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data[J]. Mountain Research, 2017, 35(3): 412-419.
|
|
唐志光, 王建, 王欣, 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J]. 山地学报, 2017, 35(3): 412-419.
|
10 |
Tang Z, Wang X, Wang J, et al. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015[J]. Remote Sensing, 2017, 9(10): 1045.
|
11 |
Huang X, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017, 190: 274-288.
|
12 |
Xiong Chuan, Yao Ruzhen, Shi Jiancheng, et al. Change of snow and ice melting time in High Mountain Asia[J]. Chinese Science Bulletin, 2019, 64(27): 2885-2893.
|
|
熊川, 姚汝桢, 施建成, 等. 高亚洲地区冰雪融化时间变化[J]. 科学通报, 2019, 64(27): 2885-2893.
|
13 |
Kang Shichang, Guo Wanqin, Wu Tonghua, et al. Cryospheric changes and their impacts on water resources in the Belt and Road regions[J]. Advances in Earth Science, 2020, 35(1): 1-17.
|
|
康世昌, 郭万钦, 吴通华, 等. “一带一路”区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展, 2020, 35(1): 1-17.
|
14 |
Liu Yijing, Sun Yanhua, Zhong Xinyue, et al. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 140-156.
|
|
刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极: 积雪变化研究进展[J]. 冰川冻土, 2020, 42(1): 140-156.
|
15 |
Guo H, Li X, Qiu Y. Comparison of global change at earth’s “three poles” using spaceborne earth observation[J]. Science Bulletin, 2020, 65(16): 1320-1323.
|
16 |
Che Tao, Li Xin, Li Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of Earth’s Three Poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484-493.
|
|
车涛, 李新, 李新武, 等. 冰冻圈遥感: 助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484-493.
|
17 |
Chen X, Liang S, Cao Y, et al. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001—2014[J]. Scientific reports, 2015, 5(1): 1-9.
|
18 |
Wang K, Zhang L, Qiu Y, et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau[J]. International Journal of Digital Earth, 2015, 8(1): 58-75.
|
19 |
Peng S, Piao S, Ciais P, et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades[J]. Environmental Research Letters, 2013, 8(1): 014008.
|
20 |
Ke C, Li X, Xie H, et al. Variability in snow cover phenology in China from 1952 to 2010[J]. Hydrology and Earth System Sciences, 2016, 20(2): 755-770.
|
21 |
Ma N, Yu K, Zhang Y, et al. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks[J]. Climate Dynamics, 2020, 55(9): 2867-2887.
|
22 |
Wang Xiaoyue, Wang Siyuan, Yin Hang, et al. Snow phenology variability in the Qinghai-Tibetan Plateau and its response to climate change during 2002—2012[J]. Journal of Geo-information Science, 2016, 18(11): 1573-1579.
|
|
汪箫悦, 王思远, 尹航, 等. 2002—2012年青藏高原积雪物候变化及其对气候的响应[J]. 地球信息科学学报, 2016, 18(11): 1573-1579.
|
23 |
Qiao Dejing, Wang Nianqin, Li Zhen, et al. Spatio-temporal changes of snow phenology in the Qinghai-Tibetan Plateau during the hydrological year of 1980-2009.[J]. Climate Change Research, 2018, 14(2): 137-143.
|
|
乔德京, 王念秦, 李震, 等. 1980-2009水文年青藏高原积雪物候时空变化遥感分析[J]. 气候变化研究进展, 2018, 14(2): 137-143.
|
24 |
Smith T, Bookhagen B, Rheinwalt A. Spatiotemporal patterns of High Mountain Asia’s snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016[J]. The Cryosphere, 2017, 11(5): 2329-2343.
|
25 |
Tang Qiuhong, Lan Cuo, Su Fengge, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019, 64(27): 2807-2821.
|
|
汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019, 64(27): 2807-2821.
|
26 |
Ding Yongjian, Zhao Qiudong, Wu Jinkui, et al. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 23-32.
|
|
丁永建, 赵求东, 吴锦奎, 等. 中国冰冻圈水文未来变化及其对干旱区水安全的影响[J]. 冰川冻土, 2020, 42(1): 23-32.
|
27 |
Consortium R. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 6.0[R]. Technical Report, Global Land Ice Measurements from Space, Colorado, USA, 2017.
|
28 |
Dwyer J, Schmidt G. The MODIS reprojection tool[M]. Earth Science Satellite Remote Sensing, Springer, 2006: 162-177.
|
29 |
Gafurov A, Bárdossy A. Cloud removal methodology from MODIS snow cover product[J]. Hydrology and Earth System Sciences, 2009, 13(7): 1361-1373.
|
30 |
Gao Y, Xie H, Yao T, et al. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA[J]. Remote Sensing of Environment, 2010, 114(8): 1662-1675.
|
31 |
Qiu Yubao, Zhang Huan, Chu Duo, et al. Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 515-526.
|
|
邱玉宝, 张欢, 除多, 等. 基于MODIS的青藏高原逐日无云积雪产品算法[J]. 冰川冻土, 2017, 39(3): 515-526.
|
32 |
Xie H, Wang X, Liang T. Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China[J]. Journal of Applied Remote Sensing, 2009, 3(1): 033559.
|
33 |
Hall D K, Riggs G A, Foster J L, et al. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product[J]. Remote sensing of environment, 2010, 114(3): 496-503.
|
34 |
López-Burgos V, Gupta H V, Clark M. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach[J]. Hydrology and Earth System Sciences, 2013, 17(5): 1809-1823.
|
35 |
Gao Y, Xie H, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of hydrology, 2010, 385(1): 23-35.
|
36 |
Huang Xiaodong, Hao Xiaohua, Wang Wei, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1118-1126.
|
|
黄晓东, 郝晓华, 王玮, 等. MODIS 逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5): 1118-1126.
|
37 |
Wang G, Jiang L, Hao S, et al. Cloud-free fractional snow cover estimation from blended MODIS and FY-2 VISSR measurements[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 5191-5194.
|
38 |
Dozier J, Painter T H, Rittger K, et al. Time-space continuity of daily maps of fractional snow cover and albedo from MODIS[J]. Advances in Water Resources, 2008, 31(11): 1515-1526.
|
39 |
Huang Y, Liu H, Yu B, et al. Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin[J]. Remote Sensing of Environment, 2018, 204: 568-582.
|
40 |
Tang Z, Wang J, Li H, et al. Spatiotemporal changes of snow cover over the Tibetan Plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073582.
|
41 |
Tang Zhiguang, Wang Jian, Li Hongyi, et al. Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau[J]. Remote Sensing Technology and Application, 2013, 28(3): 423-430.
|
|
唐志光, 王建, 李弘毅, 等. 青藏高原 MODIS 积雪面积比例产品的精度验证与去云研究[J]. 遥感技术与应用, 2013, 28(3): 423-430.
|
42 |
Tang Zhiguang, Wang Jian. Daily cloudless MODIS Snow area ratio data set of the QTP (2000—2015)[DB]. National Tibetan Plateau Data Center, 2019. DOI: 10.3972/westdc.024.2013.db.
doi: 10.3972/westdc.024.2013.db. CSTR: 18406.11.westdc.024.2013.db
|
|
唐志光, 王建. 青藏高原逐日无云MODIS积雪面积比例数据集(2000—2015)[DB]. 国家青藏高原科学数据中心, 2019. DOI: 10.3972/westdc.024.2013.db. CSTR: 18406.11.westdc.024.2013.db.
doi: 10.3972/westdc.024.2013.db. CSTR: 18406.11.westdc.024.2013.db
|
43 |
Sun He, Su Fengge, Huang Jingheng, et al. Contrasting precipitation gradient characteristics between westerlies and monsoon dominated upstream river basins in the Third Pole[J]. Chinese Science Bulletin, 2020, 65(1): 91-104.
|
|
孙赫, 苏凤阁, 黄敬恒, 等. 第三极西风和季风主导流域源区降水呈现不同梯度特征[J]. 科学通报, 2020, 65(1): 91-104.
|
44 |
Liu L, Gu H, Xie J, et al. How well do the ERA-Interim, ERA-5, GLDAS-2.1 and NCEP-R2 reanalysis datasets represent daily air temperature over the Tibetan Plateau?[J]. International Journal of Climatology, 2021, 41(2): 1484-1505.
|
45 |
Chen Y, Ji D. Evaluation of ERA5 atmospheric reanalysis datasets for surface climatology over the Tibetan Plateau[C]//AGUFM 2019, 2019: A13R-3100.
|
46 |
Huai B, Wang J, Sun W, et al. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau[J]. Atmospheric Research, 2021, 250: 105401.
|
47 |
Zhang H, Zhang F, Zhang G, et al. Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan Plateau[J]. Journal of Hydrology, 2021, 592: 125795.
|
48 |
Zhang H, Zhang F, Zhang G, et al. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold[J]. Science of the Total Environment, 2019, 651: 2712-2726.
|
49 |
Hao Xiaohua, Wang Jian, Li Hongyi. Evaluation of the NDSI threshold value in mapping snow cover of MODIS: a case study of snow in the middle Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 132-138.
|
|
郝晓华, 王建, 李弘毅. MODIS积雪制图中NDSI阈值的检验——以祁连山中部山区为例[J]. 冰川冻土, 2008, 30(1): 132-138.
|
50 |
Zhang H, Zhang F, Che T, et al. Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations[J]. Science of the Total Environment, 2020, 724: 138156.
|
51 |
Hirsch R M, Slack J R, Smith R A. Techniques of trend analysis for monthly water quality data[J]. Water Resources Research, 1982, 18(1): 107-121.
|
52 |
Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
|
53 |
Mann H B. Nonparametric tests against trend[J]. Econometrica: Journal of the Econometric Society, 1945: 245-259.
|
54 |
Hamed K H. Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis[J]. Journal of Hydrology, 2008, 349(3-4): 350-363.
|
55 |
Caloiero T, Coscarelli R, Ferrari E. Application of the innovative trend analysis method for the trend analysis of rainfall anomalies in southern Italy[J]. Water Resources Management, 2018, 32(15): 4971-4983.
|
56 |
Li Peiji, Mi Desheng. Distribution of snow cover in China[J]. Journal of Glaciology and Geocryology, 1983, 5(4): 9-18.
|
|
李培基, 米德生. 中国积雪的分布[J]. 冰川冻土, 1983, 5(4): 9-18.
|