1 |
Sicart J E, Hock R, Six D. Glacier melt, air temperature, and energy balance in different climates the Bolivian Tropics, the French Alps, and northern Sweden[J]. Journal of Geophysical Research, 2008, 113: D24113.
|
2 |
Giesen R, Andreassen L M, Oerlemans J, et al. Surface energy balance in the ablation zone of Langfjordjokelen an arctic, maritime glacier in northern Norway[J]. Journal of Glaciology, 2014, 60(219): 57-70.
|
3 |
Zhu M L, Yao T D, Yang W, et al. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau[J]. Climate Dynamics, 2018, 50(9): 3457-3484.
|
4 |
Li Z Q, Li H L, Chen Y N. Mechanisms and simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No.1 in eastern Tianshan, central Asia[J]. Journal of Earth Science, 2011, 22(4): 423-430.
|
5 |
Hock R. Glacier melt: a review of processes and their modeling [J]. Progress in Physical Geography, 2005, 29(3): 362-391.
|
6 |
Cuffey K M, Paterson W S B. The physics of glaciers[M]. USA: Academic Press, 2010.
|
7 |
Oerlemans J, Knap W H. A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland[J]. Journal of Glaciology, 1998, 44(147): 231-238.
|
8 |
Brock B W, Willis I C, Sharp M J. Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland[J]. Journal of Glaciology, 2002, 46(155): 675-688.
|
9 |
Moustafa S E, Rennermalm A K, Smith L C, et al. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet[J]. The Cryosphere, 2015, 9: 905-923.
|
10 |
Brun F, Dumont M, Berthier E, et al. Seasonal changes in surface albedo of Himalayan glaciers from MODIS data links with the annual mass balance[J]. The Cryosphere, 2015, 9(1): 341-355.
|
11 |
Naegeli K, Huss M, Hoelzle M. Change detection of bare-ice albedo in the Swiss Alps[J]. The Cryosphere, 2019, 13: 397-412.
|
12 |
Xu Tianli, Wu Guangjian, Zhang Xuelei, et al. Albedo on glaciers in Tibetan Plateau based on MODIS data: spatiotemporal distribution and variation[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 875-883.
|
|
徐田利, 邬光剑, 张学磊, 等.基于MODIS数据的青藏高原冰川反照率时空分布及变化研究[J]. 冰川冻土, 2018, 40(5): 875-883.
|
13 |
Wang J, Ye B S, Cui Y H, et al. Spatial and temporal variations of albedo on nine glaciers in western China from 2000 to 2011[J]. Hydrological Processes, 2014, 28: 3454-3465.
|
14 |
Bai Zhongyuan, Ohata Tetsuo. Variations of albedo on the Glacier No.1 at the headwater of Urumqi River, TianshanMountains, during the summer ablation period[J]. Journal of Glaciology and Geocryology, 1989, 11(4): 311-324.
|
|
白重瑗, 大畑哲夫. 天山乌鲁木齐河源1号冰川夏季消融期内反射率的变化[J]. 冰川冻土, 1989, 11(4): 311-324.
|
15 |
Takeuchi N, Li Z Q. Characteristics of surface dust on Ürümqi Glacier No.1 in the Tien Shan Mountains, China [J]. Arctic, Antarctic, and Alpine Research, 2007, 40(4): 744-750.
|
16 |
Ming J, Xiao C D, Wang F T, et al. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities[J]. Environmental Science and Pollution Research, 2016, 23(10): 9549-9558.
|
17 |
Wang P Y, Li Z Q, Li H L, et al. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No.1, Tian Shan, Central Asia[J]. Global and Planetary Change, 2014, 114: 14-22.
|
18 |
Klok E J, Greull W, Oerlemans J. Temporal and spatial variation of the surface albedo of Morteratschgletscher, Switzerland, as derived from 12 Landsat images[J]. Journal of Glaciology, 2003, 49(167): 491-502.
|
19 |
Knap W H, Brock B W, Oerlemans J, et al. Comparison of Landsat TM-derived and ground-based albedos of Haut Glacier d'Arolla, Switzerland[J]. International Journal of Remote Sensing, 1999, 20(17): 3293-3310.
|
20 |
Fugazza D, Senese A, Azzoni R S, et al. Spatial distribution of surface albedo at the Forni Glacier (Stelvio National Park, Central Italian Alpa)[J]. Cold Regions Science and Technology, 2016, 125: 128-137.
|
21 |
Zhang Huawei. Snow albedo retrieval and its application in the Tibetan Plateau[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2012.
|
|
张华伟. 青藏高原典型冰川区域积雪反照率反演及其应用研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012.
|
22 |
Hang Wei, Zhang Liangpei, Li Pingxiang. An improved topographic correction approach for satellite image[J]. Journal of Image Graphics, 2005, 10(9): 1124-1128.
|
|
黄微, 张良培, 李平湘.一种改进的卫星影像地形校正算法[J]. 中国图像图形学报, 2005, 10(9): 1124-1128.
|
23 |
Greuell W, Wildt M R. Anisotropic reflection by melting glacier ice measurements and parameterizations in Landsat TM bands 2 and 4[J]. Remote Sensing of Environment, 1999, 70: 265-277.
|
24 |
Reijmer C H, Bintanja R, Greuell W. Surface albedo measurements over snow blue ice in thematic mapper bands 2 and 4 Dronning Maud Land, Antarctica[J]. Journal of Geophysical Research, 2001, 106(D9): 9661-9672.
|
25 |
Knap W H, Reijmer C H, Oerlemans J. Narrowband to broadband conversion of Landsat TM glacier albedos[J]. International Journal of Remote Sensing, 1999, 20(10): 2091-2110.
|
26 |
Wei Yarui, Hao Xiaohua, Wang Jian, et al. Retrieval and analysis of spatiotemporal variation of snow black carbon and snow grain size in Northern Xinjiang based on MODIS data[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1192-1204.
|
|
魏亚瑞, 郝晓华, 王建, 等.基于MODIS数据的北疆积雪黑碳和雪粒径反演及时空变化分析 [J]. 冰川冻土, 2019, 41(5): 1192-1204.
|
27 |
Zhang Liancheng, Hu Liequn, Li Shuailei, et al. Analyses of summer snowline elevation and its influencing factors in the Kunlun Mountain based on RS, 2001-2015[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 546-553.
|
|
张连成, 胡列群, 李帅磊, 等.基于RS的昆仑山区夏季雪线高程变化及其影响因素分析[J]. 冰川冻土, 2019, 41(3): 546-553.
|
28 |
Wright P, Bergin M, Dibb J, et al. Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland[J]. Remote Sensing of Environment, 2014, 140: 118-129.
|
29 |
Li Y, Kang S C, Yan F P, et al. Cryoconite on a glacier on the northeastern Tibetan Plateau: light absorbing impurities albedo and enhanced melting[J]. Journal of Glaciology, 2019, 65(252): 633-644.
|
30 |
Liang S L. Narrowband to broadband conversions of land surface albedo I: algorithms[J]. Remote sensing of environment, 2001, 76(2): 213-238.
|
31 |
Xu C H, Li Z Q, Wang P Y, et al. Detailed comparison of glaciological and geodetic mass balances for Urumqi Glacier No.1, eastern Tien Shan, China, from 1981 to 2015[J]. Cold Regions Science and Technology, 2018, 155, 137-148.
|
32 |
Wang Jiemin, Gao Feng. Discussion on the problems on land surface albedo retrieval by remote sensing data[J]. Remote Sensing Technology and Application, 2004, 19(5): 295-300.
|
|
王介民, 高峰. 关于地表反照率遥感反演的几个问题[J]. 遥感技术与应用, 2004, 19 (5): 295-300.
|
33 |
Kang Ersi, Ohmura Atsumu. Study on energy-water-mass balance and the hydrological flow model in a glacierized catchment of Tianshan Mountain[J]. Chinese Science Bulletin, 1993, 38(10): 925-929.
|
|
康尔泗, Ohmura Atsumu. 天山冰川作用流域能-水-质平衡和水文流量模型研究[J]. 科学通报, 1993, 38(10): 925-929.
|
34 |
Gardner A S, Sharp M J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F1): 1-15.
|
35 |
Oerlemans J, Giesen R H, Van den Broeke M R. Retreating alpine glaciers increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)[J]. Journal of Glaciology, 2009, 55 (192): 729-736.
|
36 |
Sun W J, Qin X, Wang Y T, et al. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China[J]. Climate Dynamics, 2018, 50(9): 3557-3570.
|
37 |
Takeuchi N, Nishiyama H, Li Z Q. Structure and formation process of cryoconite granules on Urumqi glacier No.1, Tien Shan, China[J]. Annals of Glaciology, 2010, 51(56): 9-14.
|
38 |
Takeuchi N. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range[J]. Journal of Glaciology, 2009, 55(192): 701-709.
|
39 |
Brock B W. An analysis of short-term albedo variations at Haut Glacier d’Arolla, Switzerland[J]. Geografiska Annaler, 2004, 86A(1): 53-65.
|
40 |
Azzoni R S, Senese A, Zerboni A, et al. Estimating ice albedo from fine debris cover quantified by a semi-automatic method the case study of Forni Glacier, Italian Alps[J]. The Cryosphere, 2016, 10: 665-679.
|