1 |
Yao T, Thompson L G, Duan K, et al. Temperature and methane records over the last 2 ka in Dasuopu ice core[J]. Science in China: Series D Earth Sciences, 2002, 45(12): 1068-1074.
|
2 |
Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429: 623-628.
|
3 |
Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320): 1821-1825.
|
4 |
Yao Tandong, Han Jiankang, Zhang Wanchang, et al. The environmental record in glaciers and ices sheets[J]. Lanzhou Science and Technology Press, 1993.
|
|
姚檀栋, 韩健康, 张万昌, 等. 冰川与冰盖中的环境记录[J]. 兰州: 甘肃科学技术出版社, 1993.
|
5 |
Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 2016, 61(9): 926-937.
|
|
田立德, 姚檀栋. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 2016, 61(9): 926-937.
|
6 |
Thompson L G, Yao T, Davis M E, et al. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains[J]. Quaternary Science Reviews, 2018, 188: 1-14.
|
7 |
Yao Tandong, Shi Yafeng, Qin Dahe, et al. Record of climate change since the last interglacial in the Guliya ice core[J]. Science in China: Series D Earth Sciences, 1997, 27(5): 447-452.
|
|
姚檀栋, 施雅风, 秦大河, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学: D辑 地球科学, 1997, 27(5): 447-452.
|
8 |
Tian L, Yao T, Li Z, et al. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs[J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D13.
|
9 |
Wang M, Xu B, Cao J, et al. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing[J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1191-1204.
|
10 |
You C, Yao T, Xu C. Recent increases in wildfires in the Himalayas and surrounding regions detected in central Tibetan ice core records[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(6): 3285-3291.
|
11 |
Gabrielli P, Wegner A, Sierra-Hernández M R, et al. Early atmospheric contamination on the top of the Himalayas since the onset of the European Industrial Revolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(8): 3967-3973.
|
12 |
Vogel A L, Lauer A, Fang L, et al. A comprehensive nontarget analysis for the molecular reconstruction of organic aerosol composition from glacier ice cores[J]. Environmental Science & Technology, 2019, 53(21): 12565-12575.
|
13 |
Geng L, Alexander B, Cole-Dai J, et al. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change[J]. Proceedings of the National Academy of Sciences, 2014, 111(16): 5808-5812.
|
14 |
Geng L, Murray L T, Mickley L J, et al. Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions[J]. Nature, 2017, 546(7656): 133-136.
|
15 |
Li Z, Hastings M G, Walters W W, et al. Isotopic evidence that recent agriculture overprints climate variability in nitrogen deposition to the Tibetan Plateau[J]. Environment International, 2020, 138: 105614.
|
16 |
Sofen E D, Alexander B, Kunasek S A. The sensitivity of oxygen isotopes of ice core sulfate to changing oxidant concentrations since the preindustrial[J]. Atmospheric Chemistry and Physics, 2010, 10: 20607-20623.
|
17 |
Cai Z, Tian L, Bowen G J. Influence of recent climate shifts on the relationship between ENSO and Asian Monsoon precipitation oxygen isotope ratios[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7825-7835.
|
18 |
Cai Z, Tian L. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon region[J]. Journal of Climate, 2016, 29(4): 1339-1352.
|
19 |
Hou S, Jenk T M, Zhang W, et al. Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains[J]. The Cryosphere, 2018, 12(7): 2341-2348.
|
20 |
Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene—late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau[J]. Science, 1989, 246(4929): 474-477.
|
21 |
Thompson L G, Davis M E, Mosley-Thompson E, et al. Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales[J]. Journal of Quaternary Science: Published for the Quaternary Research Association, 2005, 20(7/8): 723-733.
|
22 |
Kehrwald N M, Thompson L G, Tandong Y, et al. Mass loss on Himalayan glacier endangers water resources[J]. Geophysical Research Letters, 2008, 35(22).
|
23 |
Wang N, Yao T, Pu J, et al. Climatic and environmental changes over the last millennium recorded in the Malan ice core from the northern Tibetan Plateau[J]. Science in China Series D Earth Sciences, 2006, 49(10): 1079-1089.
|
24 |
Ninglian W, Thompson L G, Davis M E, et al. Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core[J]. Geophysical Research Letters, 2003, 30(22): 1-6.
|
25 |
Kang S, Qin D, Ren J, et al. Relationships between an ice core records from southern Tibetan Plateau and atmospheric circulation over Asia[J]. Quaternary Sciences, 2006, 26(2): 153-164.
|
26 |
Xu Chenpeng, Li Jiule, Wang Ninglian. Climatic and environmental indications of stable oxygen isotopes in enclosed air bubbles in Tanggula ice core[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(1): 145-152.
|
|
徐陈鹏, 李久乐, 王宁练. 唐古拉冰芯包裹气体氧稳定同位素气候环境指示意义[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 145-152.
|
27 |
Tian Lide, Yao Tandong, Sun Weizhen, et al. The effect of snow storm in the south of Himalayas on ice core record[J]. Journal of Meteorological, 2001, 59(4): 509-512.
|
|
田立德, 姚檀栋, 孙维贞, 等. 喜马拉雅山南坡冬季暴雪对高原南部冰芯中稳定同位素记录的影响[J]. 气象学报, 2001, 59(4): 509-512.
|
28 |
Zhang Y, Kang S, Grigholm B, et al. Twentieth-century warming preserved in a Geladaindong mountain ice core, central Tibetan Plateau[J]. Annals of Glaciology, 2016, 57(71): 70-80.
|
29 |
An W, Hou S, Zhang W, et al. Significant recent warming over the northern Tibetan Plateau from ice core δ 18O records[J]. Climate of the Past, 2016, 12(2): 201-211.
|
30 |
Zou X, Hou S, Zhang W, et al. An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record[J]. Environmental Pollution, 2020, 262: 114314.
|
31 |
Hou S, Zhang W, Fang L, et al. Brief Communication: new evidence further constraining Tibetan ice core chronologies to the Holocene[J]. The Cryosphere, 2021, 15(4): 2109-2114.
|
32 |
You Chao. Historical biomass burning records in the Zangsegangri ice core[D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
|
游超. 藏色岗日冰芯中生物质燃烧历史记录研究[D]. 北京: 中国科学院大学, 2016.
|
33 |
Zhang Z, Hou S, Yi S. The first luminescence dating of Tibetan glacier basal sediment[J]. The Cryosphere, 2018, 12(1): 163-168.
|
34 |
Shao L, Tian L, Wu G, et al. Dating of an alpine ice core from the interior of the Tibetan Plateau[J]. Quaternary International, 2020, 544: 88-95.
|
35 |
Shao L, Tian L, Cai Z, et al. Driver of the interannual variations of isotope in ice core from the middle of Tibetan Plateau[J]. Atmospheric Research, 2017, 188: 48-54.
|
36 |
Thompson L G, Yao T, Davis M E, et al. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains[J]. Quaternary Science Reviews, 2018, 188: 1-14.
|
37 |
Yao Tandong, Duan Keqin, Tian Lide, et al. Dussop ice core accumulation record and changes in Indian summer monsoon precipitation in the past 400 years[J]. Since in China: Series D Earth Sciences, 2000, 30(6): 619-627.
|
|
姚檀栋, 段克勤, 田立德, 等. 达索普冰芯积累量记录和过去400 a来印度夏季风降水变化[J]. 中国科学: D辑 地球科学, 2000, 30(6): 619-627.
|
38 |
Tian Lide, Yao Tandong, Wen Rong, et al. Preliminary study on the climatic significance of the isotopic records from the ice cores of Namuna Ni in the western Tibetan Plateau[J]. Quaternary Research, 2012, 32(1): 46-52.
|
|
田立德, 姚檀栋, 文蓉, 等. 青藏高原西部纳木那尼冰芯同位素记录的气候意义初探[J]. 第四纪研究, 2012, 32(1): 46-52.
|
39 |
Tian Lide, Yao Tandong, Sun Weizhen, et al. Changes of oxygen stable isotopes during water evaporation in the central Tibetan Plateau[J] Journal of Glaciology and Geocryology, 2000, 22(2): 159-164.
|
|
田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22(2): 159-164.
|
40 |
Hou S, Qin D, Zhang D, et al. Comparison of two ice-core chemical records recovered from the Qomolangma (Mount Everest) region, Himalaya[J]. Annals of Glaciology, 2002, 35: 266-272.
|
41 |
Cheng H, Zhang P Z, Spötl C, et al. The climatic cyclicity in semiarid-arid central Asia over the past 500 000 years[J]. Geophysical Research Letters, 2012, 39(1): 1-5.
|
42 |
Hou S, Zhang W, Pang H, et al. Apparent discrepancy of Tibetan ice core δ 18O records may be attributed to misinterpretation of chronology[J]. The Cryosphere, 2019, 13(6): 1743-1752.
|
43 |
Yang X, Yao T, Zhao H, et al. Possible ENSO influences on the northwestern Tibetan Plateau revealed by annually resolved ice core records[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(8): 3857-3870.
|
44 |
Blunier T, Spahni R, Barnola J M, et al. Synchronization of ice core records via atmospheric gases[J]. Climate of the Past, 2007, 3(2): 325-330.
|
45 |
Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy[J]. Quaternary Science Reviews, 2014, 106: 14-28.
|
46 |
WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665.
|
47 |
Jones T R, White J W C, Steig E J, et al. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores[J]. Atmospheric Measurement Techniques, 2017, 10(2): 617-632.
|
48 |
Jones T R, Roberts W H G, Steig E J, et al. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography[J]. Nature, 2018, 554(7692): 351-355.
|
49 |
Reinhardt H, Kriews M, Miller H, et al. Application of LA-ICP-MS in polar ice core studies[J]. Anal Bioanal Chem, 2003, 375(8): 1265-1275.
|
50 |
Sneed S B, Mayewski P A, Sayre W G, et al. New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores[J]. Journal of Glaciology, 2015, 61(226): 233-242.
|
51 |
Xu Baiqing, Yao Tandong. A study of bubble sealing process at an altitude of 7 100 m in Dthorpe Glacier[J]. Journal of Glaciology and Geocryology, 1999, 21(2): 120-124.
|
|
徐柏青, 姚檀栋. 达索普冰川海拔7 100 m处气泡封闭过程研究[J]. 冰川冻土, 1999, 21(2): 120-124.
|
52 |
Yao Tandong, Xu Baiqing, Duan Keqin, et al. Records of temperature and methane concentration in the last 2 ka from Dassopu ice core on the Tibetan Plateau[J]. Since in China: Series D Earth Science, 2002, 32(4):346-352.
|
|
姚檀栋, 徐柏青, 段克勤, 等. 青藏高原达索普冰芯2 ka来温度与甲烷浓度变化记录[J]. 中国科学: D辑 地球科学, 2002, 32(4):346-352.
|
53 |
Tian L, Yao T, Li Z, et al. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D13): 1-7.
|
54 |
Jiang W, Bailey K, Lu Z T, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples[J]. Geochimica et Cosmochimica Acta, 2012, 91: 1-6.
|
55 |
Buizert C, Baggenstos D, Jiang W, et al. Radiometric 81Kr dating identifies 120 000-year-old ice at Taylor Glacier, Antarctica[J]. Proceedings of the National Academy of Sciences, 2014, 111(19): 6876-6881.
|
56 |
Jiang W, Williams W, Bailey K, et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis[J]. Physical Review Letters, 2011, 106(10): 103001.
|
57 |
Ebser S, Kersting A, Stöven T, et al. 39Ar dating with small samples provides new key constraints on ocean ventilation[J]. Nature Communications, 2018, 9(1): 1-7.
|
58 |
Feng Z, Bohleber P, Ebser S, et al. Dating glacier ice of the last millennium by quantum technology[J]. Proceedings of the National Academy of Sciences, 2019, 116(18): 8781-8786.
|
59 |
Hoffmann H, Preunkert S, Legrand M, et al. A new sample preparation system for Micro-14C dating of glacier ice with a first application to a high Alpine ice core from Colle Gnifetti (Switzerland)[J]. Radiocarbon, 2018, 60(2): 517-533.
|
60 |
Fang L, Schindler J, Jenk T M, et al. Extraction of dissolved organic carbon from glacier ice for radiocarbon analysis[J]. Radiocarbon, 2019, 61(3): 681-694.
|
61 |
Wang C, Tian L, Shao L, et al. Glaciochemical records for the past century from the Qiangtang Glacier No. 1 ice core on the central Tibetan Plateau: likely proxies for climate and atmospheric circulations[J]. Atmospheric Environment, 2019, 197: 66-76.
|
62 |
Palcsu L, Morgenstern U, Sültenfuss J, et al. Modulation of cosmogenic tritium in meteoric precipitation by the 11-year cycle of solar magnetic field activity[J]. Scientific Reports, 2018, 8(1): 1-9.
|
63 |
Clarke W B, Jenkins W J, Top Z. Determination of tritium by mass spectrometric measurement of 3He[J]. The International Journal of Applied Radiation and Isotopes, 1976, 27(9): 515-522.
|