1 |
Lu Jiujun, Li Xiuzhen, Hu Yuanman, et al. Research progress on permafrost in cold region ecosystem[J]. Chinese Journal of Ecology, 2007, 26(3): 435-442.
|
|
吕久俊, 李秀珍, 胡远满, 等. 寒区生态系统中多年冻土研究进展[J]. 生态学杂志, 2007, 26(3): 435-442.
|
2 |
Camill P, Clark J S. Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary[J]. Ecosystems, 2000, 3(6): 534-544.
|
3 |
Wang Junqi, Wang Guangjun, Liang Sihai, et al. Extraction and spatio-temporal analysis of vegetation coverage from 1996 to 2015 in the source region of the Yellow River[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 662-674.
|
|
王俊奇, 王广军, 梁四海, 等. 1996—2015 年黄河源区植被覆盖度提取和时空变化分析[J]. 冰川冻土, 2021, 43(2): 662-674.
|
4 |
Wang Tao, Zhao Yuanzhen, Wang Hui, et al. Spatial and temporal changes of vegetation index and their response to temperature and precipitation in the Tibetan Plateau based on GIMMS NDVI[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 641-652.
|
|
王涛, 赵元真, 王慧, 等. 基于GIMMS NDVI的青藏高原植被指数时空变化及其气温降水响应[J]. 冰川冻土, 2020, 42(2): 641-652.
|
5 |
Slater A G, Lawrence D M. Diagnosing present and future permafrost from climate models[J]. Journal of Climate, 2013, 26(15): 5608-5623.
|
6 |
Koven C, Riley W, Stern A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models[J]. Journal of Climate, 2013, 26(6): 1877-1900.
|
7 |
Luo D, Wu Q, Jin H, et al. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 2016, 75(7): 555-570.
|
8 |
Romanovsky V E, Drozdov D S, Oberman N G, et al. Thermal state of permafrost in Russia[J]. Permafrost and Periglacial Processes, 2010, 21(2): 136-155.
|
9 |
Yang Jianping, Yang Suiqiao, Li Man, et al. Vulnerability of frozen ground to climate change in China[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1436-1445.
|
|
杨建平, 杨岁桥, 李曼, 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013, 35(6): 1436-1445.
|
10 |
Wang Chunhe, Zhang Baolin, Liu Futao. A preliminary analysis on the regularity of permafrost degradation, its advantages and disadvantages in the Greater and Lesser Xingan Mountains[J]. Journal of Glaciology and Geocryology, 1996, 18(S1): 174-180.
|
|
王春鹤, 张宝林, 刘福涛. 大、小兴安岭多年冻土退化规律及利弊的初步分析[J]. 冰川冻土, 1996, 18(S1): 174-180.
|
11 |
Dai Jingbo. On permafrost drilling in dahingganling regions of northeast China[J]. Journal of Glaciology and Geocryology, 1982, 4(2): 81-85.
|
|
戴竞波. 东北大兴安岭地区多年冻土钻探[J]. 冰川冻土, 1982, 4(2): 81-85.
|
12 |
Wang Shaoling, Zhao Xiufeng, Guo Dongxin, et al. Response of permafrost to climate change in the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1996, 18(): 157-165.
|
|
王绍令, 赵秀锋, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(): 157-165.
|
13 |
Zeng Zhonggeng, Huang Yizhi, Xia Zhiying, et al. The radar detecting on permafrost distribution under the asphalt road of Qinghai-Xizang Highway[J]. Journal of Glaciology and Geocryology, 1993, 15(1): 70-76.
|
|
曾仲巩, 黄以职, 夏志英, 等. 青藏公路沥青路面下多年冻土分布的雷达探测[J]. 冰川冻土, 1993, 15(1): 70-76.
|
14 |
Gu Zhongwei. The applications of ground probing radar to geological investigation on ground in cold regions[J]. Journal of Glaciology and Geocryology, 1994, 16(3): 283-288.
|
|
顾钟炜. 测地雷达在寒区浅层地质调查中的应用[J]. 冰川冻土, 1994, 16(3): 283-288.
|
15 |
Wang Tong, Yu Qihao, You Yanhui, et al. Application of geophysical technology in permafrost exploration geophysical and geochemical exploration[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 639-642.
|
|
王通, 俞祁浩, 游艳辉, 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011, 35(5): 639-642.
|
16 |
Fan Zhaoping, Zhang Lihau, Lu Xun. Application of ground penetrating radar in highway engineering survey in permafrost regions[J]. Geotech Invest Survey, 2010, 38(3): 91-94.
|
|
范昭平, 张丽华, 路勋. 探地雷达在多年冻土区公路工程勘察中的应用[J]. 工程勘察, 2010, 38(3): 91-94.
|
17 |
Chen Shanshan, Zang Shuying, Sun Li. Permafrost degradation in northeast China and its environmental effects: present situation and prospect[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 298-306.
|
|
陈珊珊, 臧淑英, 孙丽. 东北多年冻土退化及环境效应研究现状与展望[J]. 冰川冻土, 2018, 40(2): 298-306.
|
18 |
Wang B, French H M. Permafrost on the Tibet plateau, China[J]. Quaternary Science Reviews, 1995, 14(3): 255-274.
|
19 |
Guo Zhenggang, Niu Fujun, Zhan Hu, et al. Changes of grassland ecosystem due to degradation of permafrost frozen soil in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2007, 27(8): 3294-3301.
|
|
郭正刚, 牛富俊, 湛虎, 等. 青藏高原北部多年冻土退化过程中生态系统的变化特征[J]. 生态学报, 2007, 27(8): 3294-3301.
|
20 |
Schuur E A G, Crummer K G, Vogel J G, et al. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra[J]. Ecosystems, 2007, 10(2): 280-292.
|
21 |
Guo Jinting, Han Fenglin, Hu Yuanman, et al. Ecological characteristics of vegetation and their responses to permafrost degradation in the northslope of Great Khingan Mountain valley of northeast China[J]. Acta Ecologica Sinica, 2017, 37(19): 6552-6561.
|
|
郭金停, 韩风林, 胡远满, 等. 大兴安岭北坡多年冻土区植物生态特征及其对冻土退化的响应[J]. 生态学报, 2017, 37(19): 6552-6561.
|
22 |
Yue Y, Liu H, Xue J, et al. Ecological indicators of near-surface permafrost habitat at the southern margin of the boreal forest in China[J]. Ecological Indicators, 2020, 108: 105714.
|
23 |
Sun Guangyou, Jin Huijun, Yu Shaopeng. The symbiosis models of marshes and pemafrost: a case study in Daxing' an and Xiaoxing' an Mountain range[J]. Wetland Science, 2008, 6(4): 479-485.
|
|
孙广友, 金会军, 于少鹏. 沼泽湿地与多年冻土的共生模式——以中国大兴安岭和小兴安岭为例[J]. 湿地科学, 2008, 6(4): 479-485.
|
24 |
Zhou Mei, Yu Xiaoxin, Feng Lin, et al. Effects of permafrost and wetland in forests in Great Xing’an Mountains on ecology and environment[J]. Journal of Beijing Forestry University, 2003, 25(6): 91-93.
|
|
周梅, 余新晓, 冯林, 等. 大兴安岭林区冻土及湿地对生态环境的作用[J]. 北京林业大学学报, 2003, 25(6): 91-93.
|
25 |
Ren B, Han F, Hu Y, et al. Plant community responses to changes in permafrost thaw depth in the Great Hing’an Mountain Valleys, China[J]. Phytocoenologia, 2018, 48(3): 273-281.
|
26 |
Mao Dehua, Wang Zongming, Luo Ling, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of northeast China in 1982-2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511-1519.
|
|
毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6): 1511-1519.
|
27 |
Chang Xiaoli, Jin Huijun, He Ruixia, et al. Review of Permafrost Monitoring in the Northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013(1): 93-100.
|
|
常晓丽, 金会军, 何瑞霞, 等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土, 2013(1): 93-100.
|
28 |
Mi Desheng. Map of snow, ice and frozen ground in China[J]. Journal of Glaciology and Geocryology, 1990, 12(4): 175-181.
|
|
米德生. 《中国冰雪冻土图》(1:400万)的编制[J]. 冰川冻土, 1990, 12(4): 175-181.
|
29 |
Lu Jiujun, Li Xiuzhen, Hu Yuanman, et al. Factors affecting the thickness of permafrost’s active layer in Huzhong National Nature Reserve[J]. Chinese Journal of Ecology, 2007, 9(26): 1369-1374.
|
|
吕久俊, 李秀珍, 胡远满, 等. 呼中自然保护区多年冻土活动层厚度的影响因子分析[J]. 生态学杂志, 2007, 9(26): 1369-1374.
|
30 |
Zhou Youwu, Guo Dongxin. Pricipal characteristcs in China[J]. Journal of Glaciology and Geocryology, 1982, 4(1): 1-19.
|
|
周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982, 4(1): 1-19.
|
31 |
Guo M, Li J, Huang S, et al. Feasibility of using MODIS products to simulate sun-Induced chlorophyll fluorescence (SIF) in boreal forests[J]. Remote Sensing, 2020, 12(4): 680.
|
32 |
Wen L, Guo M, Yin S, et al. Vegetation phenology in permafrost regions of northeastern China based on MODIS and solar-induced chlorophyll fluorescence[J]. Chinese Geographical Science, 2021, 31(3): 459-473.
|
33 |
Chang Xiaoli, Limin Tie, Jin Huijun, et al. The features of permafrost in Xinlin forest area on eastern slope of the Greater Khingan Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 103-113.
|
|
常晓丽, 帖利民, 金会军, 等. 大兴安岭东坡新林林区冻土变化特征[J]. 冰川冻土, 2020, 42(3): 103-113.
|
34 |
Ren Na, Song Changchun, Wang Xianwei, et al. Composition of plant communities in shrub-carex swamps and their species diversity in different types of permafrost zones in daxinganling region[J]. Wetlands Science, 2020, 18(2): 228.
|
|
任娜, 宋长春, 王宪伟, 等. 大兴安岭地区不同类型多年冻土区灌丛—薹草沼泽植物群落组成及其物种多样性[J]. 湿地科学, 2020, 18(2): 228.
|
35 |
Chang Xiaoli, Jin Huijun, Wang Yongping, et al. Influences of vegetation on permafrost: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7981-7990.
|
|
常晓丽, 金会军, 王永平, 等. 植被对多年冻土的影响研究进展[J]. 生态学报, 2012, 32(24): 7981-7990.
|
36 |
Keuper F, Dorrepaal E, Van Bodegom P M, et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep‐rooting subarctic peatland species[J]. Global Change Biology, 2017, 23(10): 4257-4266.
|
37 |
Sato H, Kobayashi H, Iwahana G, et al. Endurance of larch forest ecosystems in eastern Siberia under warming trends[J]. Ecology and Evolution, 2016, 6(16): 5690-5704.
|
38 |
Zhang Qibing. The responses of vegetation on northern part of Mt. Daxinganling to strongly enforced permafrost environment and environmental disturbances[J]. Journal of Glaciology and Geocryology, 2012, 16(2): 97-103.
|
|
张齐兵. 大兴安岭北部植被对高胁迫冻土环境及干扰的响应[J]. 冰川冻土, 2012, 16(2): 97-103.
|
39 |
Wang Genxu, Li Yuanshou, Wu Qingbai, et al. The relationship between frozen soil and vegetation in the permafrost regions of the Qinghai-Tibet Plateau and its impact on the alpine ecosystem[J]. Science in China (Series D Earth Sciences), 2006, 36(8): 743-754.
|
|
王根绪, 李元首, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学(D辑 地球科学), 2006, 36(8): 743-754.
|
40 |
Jin Huijun, Li Shuxun, Wang Shaoling. Impacts of climatic change on permafrost and cold regions environments in China[J]. Acta Geographica Sinica, 2000, 55(2): 161-173.
|
|
金会军, 李述训, 王绍令. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000, 55(2): 161-173.
|
41 |
Feng Yuqing, Liang Sihai, Wu Qingbai, et al. Vegetation responses to permaforst degradation in the Qinghai-Tibet Plateau[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 311-316.
|
|
冯雨晴, 梁四海, 吴青柏, 等. 冻土退化过程中植被覆盖度的变化研究[J]. 北京师范大学学报(自然科学版), 2016, 52(3): 311-316.
|
42 |
Li Y, Liu H, Zhu X, et al. How permafrost degradation threatens boreal forest growth on its southern margin?[J]. Science of The Total Environment, 2021, 762: 143154.
|