1 |
Grosse G, Goetz S, McGuire A D, et al. Changing permafrost in a warming world and feedbacks to the Earth system[J]. Environmental Research Letters, 2016, 11(4): 040201.
|
2 |
Loranty M M, Abbott B W, Blok D, et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions[J]. Biogeosciences, 2018, 15(17): 5287-5313.
|
3 |
Chadburn S E, Burke E J, Cox P M, et al. An observation-based constraint on permafrost loss as a function of global warming[J]. Nature Climate Change, 2017, 7(5): 340-344.
|
4 |
Shiklomanov N, Nelson F, Streletskiy D, et al. San Francisco: AGU2016, 2016.
|
5 |
Peng Xiaoqing, Zhang Tingjun, Frauenfeld O W, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251-266.
|
6 |
Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
|
|
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
|
7 |
Wang Genxu, Qian Ju, Cheng Guodong, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication[J]. Science of the Total Environment, 2002, 291(1/2/3): 207-217.
|
8 |
Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4609-4616.
|
9 |
Wu Qingbai, Hou Yandong, Yun Hanbo, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015, 124: 149-155.
|
10 |
Wu Qingbai, Zhang Tingjun. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9): D09107.
|
11 |
Liu Guangyue, Zhao Lin, Li Ren, et al. Permafrost warming in the context of step-wise climate change in the Tien Shan mountains, China[J]. Permafrost and Periglacial Processes, 2017, 28(1): 130-139.
|
12 |
Chen X. Physical geography of China’s arid areas[M]. The Science Publishing Company, 2015.
|
13 |
Rödder T, Kneisel C. Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps[J]. Geomorphology, 2012, 175/176: 176-189.
|
14 |
Zhang Tingjun. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002.
|
15 |
Sturm M, Holmgren J, McFadden J P, et al. Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications[J]. Journal of Climate, 2001, 14(3): 336-344.
|
16 |
Ling Feng, Zhang Tingjun. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 2003, 14(2): 141-150.
|
17 |
Yi Yonghong, Kimball J, Chen R, et al. Sensitivity of active layer freezing process to snow cover in Arctic Alaska[J]. The Cryosphere Discussions, 2018: 1-39.
|
18 |
Chen Ji, Sheng Yu, Cheng Guodong. Discussion on protection measures of permafrost under the action of engineering from the point of earth surface energy balance equation in Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(2): 223-228.
|
|
陈继, 盛煜, 程国栋. 从地表能量平衡各分量特点论青藏高原多年冻土工程中的冻土保护措施[J]. 冰川冻土, 2006, 28(2): 223-228.
|
19 |
Zhang T, Osterkamp T E, Stamnes K. Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime[J]. Water Resources Research, 1996, 32(7): 2075-2086.
|
20 |
Zhao Jingyi, Chen Ji, Wu Qingbai, et al. Snow cover influences the thermal regime of active layer in Urumqi River Source, Tianshan Mountains, China[J]. Journal of Mountain Science, 2018, 15(12): 2622-2636.
|
21 |
Zhou Jian, Kinzelbach W, Cheng Guodong, et al. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China[J]. Cold Regions Science and Technology, 2013, 90/91: 38-52.
|
22 |
Jin H, Ma W, Cheng G, et al. Dual influences of local environmental variables on ground temperatures on the Qinghai-Tibet Plateau[EB/OL]. 2008
|
23 |
Cao Bin, Zhang Tingjun, Peng Xiaoqing, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River basin, Western China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7935-7949.
|
24 |
Cao Bin. Conditions and dynamics of permafrost in the Qilian mountains over the upper reaches of Heihe River basin[D]. Lanzhou: Lanzhou University, 2018.
|
|
曹斌. 黑河上游祁连山区多年冻土状态与动态研究[D]. 兰州: 兰州大学, 2018.
|
25 |
Zhao Lin, Sheng Yu. Permafrost and its changes on the Qinghai-Tibetan Plateau[M]. Beijing: Science Press, 2019.
|
|
赵林, 盛煜. 青藏高原多年冻土及变化[M]. 北京: 科学出版社, 2019.
|
26 |
Wang Qingfeng, Zhang Tingjun, Peng Xiaoqing, et al. Changes of soil thermal regimes in the Heihe River basin over Western China[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 231-241.
|
27 |
Mu Cuicui, Zhang Tingjun, Cao Bin, et al. Study of the organic carbon storage in the active layer of permafrost over the eboling mountain in the upper reaches of the Heihe River in the eastern Qilian mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 1-9.
|
|
牟翠翠, 张廷军, 曹斌, 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013, 35(1): 1-9.
|
28 |
Mu C C, Abbott B W, Wu X D, et al. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(18): 9389-9399.
|
29 |
Mu Cuicui, Zhang Tingjun, Wu Qingbai, et al. Carbon and nitrogen properties of permafrost over the eboling mountain in the upper reach of Heihe River basin, northwestern China[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 203-211.
|
30 |
Wang Qingfeng, Zhang Tingjun, Jin Huijun, et al. Observational study on the active layer freeze-thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International, 2017, 440: 13-22.
|
31 |
Wang Qingfeng, Jin Huijun, Zhang Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin, 2016, 61(24): 2742-2756.
|
|
王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61(24): 2742-2756.
|
32 |
Ma Lijuan, Qin Dahe. Temporal-spatial characteristics of observed key parameters of snow cover in China during 1957-2009[J]. Sciences in Cold and Arid Regions, 2012, 4(5): 384.
|
33 |
Ma Lijuan, Qin Dahe, Bian Lingen, et al. Assessment of snow cover vulnerability over the Qinghai-Tibetan Plateau[J]. Advances in Climate Change Research, 2011, 2(2): 93-100.
|
34 |
Zhang T, Stamnes K. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska[J]. Permafrost and Periglacial Processes, 1998, 9(3): 229-246.
|
35 |
Huang Xiaodong, Deng Jie, Wang Wei, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017, 190: 274-288.
|
36 |
Yin Xianzhi, Zhang Qiang, Xu Qiyun, et al. Characteristics of climate change in Qilian mountains region in recent 50 years[J]. Plateau Meteorology, 2009, 28(1): 85-90.
|
|
尹宪志, 张强, 徐启运, 等. 近50年来祁连山区气候变化特征研究[J]. 高原气象, 2009, 28(1): 85-90.
|
37 |
Mu Cuicui, Zhang Tingjun, Wu Qingbai, et al. Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China[J]. Quaternary International, 2014, 321: 71-77.
|
38 |
Cao Bin, Zhang Tingjun, Wu Qingbai, et al. Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on field evidence[J]. Permafrost and Periglacial Processes, 2019, 30(3): 178-194.
|
39 |
Guglielmin M. Ground surface temperature (GST), active layer and permafrost monitoring in continental Antarctica[J]. Permafrost and Periglacial Processes, 2006, 17(2): 133-143.
|
40 |
Guglielmin M, Ellis Evans C J, Cannone N. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica)[J]. Geoderma, 2008, 144(1/2): 73-85.
|
41 |
Zhang Feng. Changes of permafrost thermal state and its impact on carbon release in the Qilian mountains[D]. Lanzhou: Lanzhou University, 2020.
|
|
张凤. 祁连山多年冻土热状态变化及其对碳释放的影响研究[D]. 兰州: 兰州大学, 2020.
|
42 |
Nelson F E. Geocryology. (Un)frozen in time[J]. Science, 2003, 299(5613): 1673-1675.
|
43 |
Zhang T, Barry R G, Gilichinsky D, et al. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia[J]. Climatic Change, 2001, 49(1): 41-76.
|
44 |
Peng Xiaoqing, Zhang Tingjun, Cao Bin, et al. Changes in freezing-thawing index and soil freeze depth over the Heihe River basin, Western China[J]. Arctic, Antarctic, and Alpine Research, 2016, 48(1): 161-176.
|
45 |
Cao Bin, Zhang Tingjun, Peng Xiaoqing, et al. Spatial variability of freezing-thawing index over the Heihe River basin[J]. Advances in Earth Science, 2015, 30(3): 357-366.
|
|
曹斌, 张廷军, 彭小清, 等. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
|
46 |
Hartman C W, Johnson P R. Environmental atlas of Alaska[M]. Washington: University of Washington Press, 1984.
|
47 |
Steurer P M, Crandell J H. Comparison of methods used to create estimate of air-freezing index[J]. Journal of Cold Regions Engineering, 1995, 9(2): 64-74.
|
48 |
Flanner M G, Zender C S. Snowpack radiative heating: Influence on Tibetan Plateau climate[J]. Geophysical Research Letters, 2005, 32(6): L06501.
|
49 |
Xiao Lin, Che Tao. Preliminary study on snow feedback to the climate system in the Tibetan Plateau[J]. Remote Sensing Technology and Application, 2015, 30(6): 1066-1075.
|
|
肖林, 车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
|
50 |
Zhong Xinyue. Spatiotemporal variability of snow cover and the relationship between snow and climate change across the Eurasian continent[D]. Beijing: University of Chinese Academy of Sciences, 2014.
|
|
钟歆玥. 欧亚大陆积雪时空变化特征及其与气候变化的关系[D]. 北京: 中国科学院大学, 2014.
|
51 |
Luo Dongliang, Wu Qingbai, Jin Huijun, et al. Recent changes in the active layer thickness across the Northern Hemisphere[J]. Environmental Earth Sciences, 2016, 75(7): 555.
|
52 |
Lü Zhou, Zhuang Qianlai. Quantifying the effects of snowpack on soil thermal and carbon dynamics of the Arctic terrestrial ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(4): 1197-1212.
|
53 |
Frauenfeld O W, Zhang Tingjun, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5): D05101.
|
54 |
Pavlov A V. Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia[J]. Permafrost and Periglacial Processes, 1994, 5(2): 101-110.
|
55 |
Kim Y, Kimball J S, Robinson D A, et al. New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes[J]. Environmental Research Letters, 2015, 10(8): 084004.
|
56 |
Euskirchen E S, Bret-Harte M S, Shaver G R, et al. Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska[J]. Ecosystems, 2017, 20(5): 960-974.
|
57 |
Mu Cuicui, Zhang Tingjun, Zhao Qian, et al. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2017, 247: 252-259.
|
58 |
Wang Xiaoyue, Wu Chaoyang, Wang Huanjiong, et al. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015[J]. Scientific Reports, 2017, 7(1): 14645.
|