冰川冻土 ›› 2021, Vol. 43 ›› Issue (6): 1888-1903.doi: 10.7522/j.issn.1000-0240.2021.0120
收稿日期:
2021-05-27
修回日期:
2021-09-03
出版日期:
2021-12-31
发布日期:
2022-01-28
通讯作者:
张世强
E-mail:996837003@qq.com;zhangsq@lzb.ac.cn
作者简介:
李飞,硕士研究生,主要从事冰冻圈冻土研究. E-mail: 基金资助:
Fei LI1,2(),Jiakai GUO1,2,Shiqiang ZHANG1,2(
)
Received:
2021-05-27
Revised:
2021-09-03
Online:
2021-12-31
Published:
2022-01-28
Contact:
Shiqiang ZHANG
E-mail:996837003@qq.com;zhangsq@lzb.ac.cn
摘要:
冻土水热过程的准确模拟对于理解和预估冰冻圈变化对水资源和生态的影响具有重要意义,其中,导热率和未冻水是多年冻土水热模拟中的两个关键参数。在VIC-CAS模型的基础上,分别尝试用EBM的导热率算法和CLM 5.0的未冻水算法替换VIC-CAS模型中的导热率和未冻水算法,并利用长江源区沱沱河站的观测数据进行了数值模拟对比试验,分析了不同的导热率和未冻水算法对土壤分层温湿度模拟的影响。结果表明:EBM导热率算法对浅层土壤的温度模拟优于原算法,而在深层土壤的模拟效果变差;对浅层土壤湿度模拟改进不明显,而对深层土壤的模拟精度降低。CLM 5.0未冻水算法对土壤温度模拟影响较小,对浅层土壤的湿度模拟效果变差,但在深层土壤上优于原算法。这两种算法的对比实验为进一步改进VIC-CAS模型中冻土水热过程的算法提供了借鉴。
中图分类号:
李飞,郭佳锴,张世强. VIC-CAS导热率和未冻水算法改进及其对多年冻土水热过程模拟的实验研究[J]. 冰川冻土, 2021, 43(6): 1888-1903.
Fei LI,Jiakai GUO,Shiqiang ZHANG. Improvement of VIC-CAS algorithm for thermal conductivity and unfrozen water and its experimental study on simulation of hydrothermal process of permafrost[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1888-1903.
1 | Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132-154. |
2 | Wang Genxu, Li Shengnan, Hu Hongchang, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation[J]. Geoderma, 2009, 149(3/4): 280-289. |
3 | Zhang Senqi, Wang Yonggui, Zhao Yongzhen, et al. Permafrost degradation and its environmental sequent in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004, 26(1): 1-6. |
张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004, 26(1): 1-6. | |
4 | Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246. |
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. | |
5 | Zou Defu, Zhao Lin, Sheng Yu, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542. |
6 | Liu Xiaodong. Influences of Qinghai Xizang(Tibet) Plateau uplift on the atmospheric circulation, global climate and environment changes[J]. Plateau Meteorology, 1999, 18(3): 321-332. |
刘晓东. 青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J]. 高原气象, 1999, 18(3): 321-332. | |
7 | Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change─ⅲ. the effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University, 1996, 32(1): 108-115. |
潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器─Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报, 1996, 32(1): 108-115. | |
8 | Cheng Guodong, Wu Tonghua. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): F02S03. |
9 | Zhao Lin, Wu Qingbai, Marchenko S S, et al. Thermal state of permafrost and active layer in Central Asia during the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207. |
10 | Jin Huijun, Luo Dongliang, Wang Shaoling, et al. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2011, 3(4): 281-305. |
11 | Pang Qiangqiang, Cheng Guodong, Li Shuxun, et al. Active layer thickness calculation over the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2009, 57(1): 23-28. |
12 | Li Junhao, Yang Guojing, Wang Shaoping. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118. |
李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征[J]. 应用生态学报, 2020, 31(6): 2109-2118. | |
13 | Chen Rensheng, Zhang Shiqiang, Yang Yong. The impact of cryosphere changes on runoff in cold regions of Western China[M]. Beijing: Science Press, 2019. |
陈仁升, 张世强, 阳勇. 冰冻圈变化对中国西部寒区径流的影响[M]. 北京: 科学出版社, 2019. | |
14 | Ye Baisheng, Ding Yongjian, Jiao Keqin, et al. The response of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32(1): 103-110. |
叶柏生, 丁永建, 焦克勤, 等. 我国寒区径流对气候变暖的响应[J]. 第四纪研究, 2012, 32(1): 103-110. | |
15 | Wang Genxu, Mao Tianxu, Chang Juan, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550: 307-317. |
16 | Song Chunlin, Wang Genxu, Mao Tianxu, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China Earth Sciences, 2020, 63(2): 292-302. |
17 | Gao Bing, Yang Dawen, Qin Yue, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2): 657-673. |
18 | Flerchinger G N, Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system I. theory and development[J]. Transactions of the ASAE, 1989, 32(2): 565-571. |
19 | Jansson P E, Moon D S. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality[J]. Environmental Modelling & Software, 2001, 16(1): 37-46. |
20 | Liang Xu, Lettenmaier D P, Wood E F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D16): 21403-21422. |
21 | Wang Xian, Zhang Hongjiang, Du Shicai, et al. Modelling forest soil moisture and temperature in Three Gorges reservoir area with CoupModel and sensitivity analysis of parameters[J]. Bulletin of Soil and Water Conservation, 2013, 33(6): 295-301. |
王贤, 张洪江, 杜仕才, 等. 基于CoupModel模型的三峡库区典型林地土壤水分和温度模拟以及参数敏感性分析[J]. 水土保持通报, 2013, 33(6): 295-301. | |
22 | Kersten M S. Laboratory research for the determination of the thermal properties of soils[R]. University of Minnesota, Minneapolis, MN, USA, 1949. |
23 | Devries D A. Thermal properties of soils[J]. Physics of Plant Environment, 1963: 210-235. |
24 | Johansen O. Thermal conductivity of soils[D]. Trondheim, Norway, 1975. |
25 | Côté J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458. |
26 | Lu Sen, Ren Tusheng, Gong Yuanshi, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8-14. |
27 | Yang Kun, Koike T, Ye Baisheng, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D8): D08101. |
28 | Bao Huiyi, Koike T, Yang Kun, et al. Development of an enthalpy-based frozen soil model and its validation in a cold region in China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5259-5280. |
29 | Vafai K, Whitaker S. Simultaneous heat and mass transfer accompanied by phase change in porous insulation[J]. Journal of Heat Transfer, 1986, 108(1): 132-140. |
30 | Li Ren, Zhao Lin, Ding Yongjian, et al. Study on soil thermodynamic characteristics at different underlying surface in northern Qinghai-Tibetan Plateau[J]. Acta Energiae Solaris Sinica, 2013, 34(6): 1076-1084. |
李韧, 赵林, 丁永建, 等. 青藏高原北部不同下垫面土壤热力特性研究[J]. 太阳能学报, 2013, 34(6): 1076-1084. | |
31 | Luo Siqiong, Lu Shihua, Zhang Yu, et al. Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau[J]. Chinese Journal of Geophysics, 2009, 52(4): 919-928. |
罗斯琼, 吕世华, 张宇, 等. 青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J]. 地球物理学报, 2009, 52(4): 919-928. | |
32 | Wang Yu, Hu Zeyong, Xun Xueyi, et al. Optimization and test of soil thermal conductivity parameterization schemes in northern Qinghai-Xizang plateau[J]. Plateau Meteorology, 2013, 32(3): 646-653. |
王愚, 胡泽勇, 荀学义, 等. 藏北高原土壤热传导率参数化方案的优化和检验[J]. 高原气象, 2013, 32(3): 646-653. | |
33 | Farouki O T. Thermal properties of soils[R]. Hanover: Cold Regions Research and Engineering Lab Hanover NH, 1981. |
34 | Liu Weimin, He Ping, Zhang Zhao. A calculation method of thermal conductivity of soils[J]. Journal of Glaciolgy and Geocryology, 2002, 24(6): 770-773. |
刘为民, 何平, 张钊. 土体导热系数的评价与计算[J]. 冰川冻土, 2002, 24(6): 770-773. | |
35 | Ren Xiaopeng, Fan Honghui. Nonlinear law research of heat conductivity for frozen soil[J]. Journal of Chengdu University (Natural Science Edition), 2015, 34(1): 101-104. |
任小朋, 樊红辉. 冻土导热系数的非线性规律研究[J]. 成都大学学报(自然科学版), 2015, 34(1): 101-104. | |
36 | Kozlowski T. Soil freezing point as obtained on melting[J]. Cold Regions Science and Technology, 2004, 38(2/3): 93-101. |
37 | Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. Beijing: Science Press, 2010. |
徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010. | |
38 | Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41. |
39 | Tipenko G, Marchenko S, Romanovsky V, et al. Spatially distributed model of permafrost dynamics in Alaska[C]//AGU Fall Meeting, San Fansicsio, CA, December13-17, 2004. |
40 | Lovell C W. Temperature effects on phase composition and strength of partially-frozen soil[J]. Highway Research Board Bulletin, 1957, 168: 74-95. |
41 | Oleson K W, Dai Yongjiu, Bonan G B, et al. Technical description of the community land mo-del(CLM)[R]. NCAR Technical Note NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO, 2004. |
42 | McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference groundwater flow model[M]. US: US Geological Survey, 1988. |
43 | Fuchs M, Campbell G S, Papendick R I. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J]. Soil Science Society of America Journal, 1978, 42(3): 379-385. |
44 | Niu Guoyue, Yang Zongliang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 2006, 7(5): 937-952. |
45 | Magnin F, Josnin J Y, Ravanel L, et al. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century[J]. The Cryosphere, 2017, 11(4): 1813-1834. |
46 | Zhang Shiqiang, Ding Yongjian, Lu Jian, et al. Simulative study of water-heat process in the Tibetan Plateau (Ⅰ): Soil moisture[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 384-388. |
张世强, 丁永建, 卢健, 等. 青藏高原土壤水热过程模拟研究(Ⅰ): 土壤湿度[J]. 冰川冻土, 2004, 26(4): 384-388. | |
47 | Zhang Shiqiang, Ding Yongjian, Lu Jian, et al. Simulative study of water-heat process in the Tibetan Plateau (Ⅱ): Soil temperature[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 95-99. |
张世强, 丁永建, 卢健, 等. 青藏高原土壤水热过程模拟研究(Ⅱ): 土壤温度[J]. 冰川冻土, 2005, 27(1): 95-99. | |
48 | Pan Yongjie, Shihua Lyu, Li Suosuo, et al. Simulating the role of gravel in freeze-thaw process on the Qinghai-Tibet Plateau[J]. Theoretical and Applied Climatology, 2017, 127(3): 1011-1022. |
49 | Guo Linmao, Chang Juan, Xu Hongliang, et al. Simulation and prediction of permafrost active layer temperature based on BP neural network and FEFLOW model: Take the Fenghuoshan area on the Tibetan Plateau as an example[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 399-411. |
郭林茂, 常娟, 徐洪亮, 等. 基于BP神经网络和FEFLOW模型模拟预测多年冻土活动层温度——以青藏高原风火山地区为例[J]. 冰川冻土, 2020, 42(2): 399-411. | |
50 | Hu Guojie, Zhao Lin, Wu Xiaodong, et al. Comparison of the thermal conductivity parameter-izations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions[J]. CATENA, 2017, 156: 244-251. |
51 | Yang Shuhua, Li Ren, Wu Tonghua, et al. Evaluation of soil thermal conductivity schemes incorporated into CLM 5.0 in permafrost regions on the Tibetan Plateau[J]. Geoderma, 2021, 401: 115330. |
52 | Lawrence D M, Fisher R A, Koven C D, et al. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4245-4287. |
53 | Balland V, Arp P A. Modeling soil thermal conductivities over a wide range of conditions[J]. Journal of Environmental Engineering and Science, 2005, 4(6): 549-558. |
54 | Liu Huolin, Hu Zeyong, Han Geng, et al. Assessment of freeze-thaw process simulation in Qinghai-Tibetan Plateau by different parameterization schemes based on Noah-MP land surface model[J]. Plateau Meteorology, 2020, 39(1): 1-14. |
刘火霖, 胡泽勇, 韩赓, 等. 基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J]. 高原气象, 2020, 39(1): 1-14. | |
55 | Niu Guoyue, Yang Zongliang, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research Atmospheres, 2011, 116(D12): D12109. |
56 | Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19569-19585. |
57 | Hu Guojie, Zhao Lin, Zhu Xiaofan, et al. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil[J]. Geoderma, 2020, 368: 114277. |
58 | van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. |
59 | Kozlowski T. A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology, 2007, 49(3): 226-236. |
60 | Zhang Mingyi, Pei Wansheng, Li Shuangyang, et al. Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region[J]. Applied Thermal Engineering, 2017, 127: 1478-1487. |
61 | Chen Jin. Water cycle mechanism in the source region of Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 1-5. |
陈进. 长江源区水循环机理探讨[J]. 长江科学院院报, 2013, 30(4): 1-5. | |
62 | Zhao Qiudong, Ding Yongjian, Wang Jian, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573: 60-81. |
63 | Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690. |
64 | Li Guoping, Duan Tingyang, Gong Yuanfa. The overall transport coefficient and ground flux in the western part of the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2000, 45(8): 865-869. |
李国平, 段廷扬, 巩远发. 青藏高原西部地区的总体输送系数和地面通量[J]. 科学通报, 2000, 45(8): 865-869. | |
65 | Ma Yaoming, Ma Weiqiang, Hu Zeyong, et al. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang plateau[J]. Plateau Meteorology, 2002, 21(5): 514-517. |
马耀明, 马伟强, 胡泽勇, 等. 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517. | |
66 | Wang Chenghai, Dong Wenjie, Wei Zhigang. The development of study on the soil freezing-thaw process in land surface model[J]. Advances in Earth Science, 2002, 17(1): 44-52. |
王澄海, 董文杰, 韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52. | |
67 | Penner E. Thermal conductivity of frozen soils[J]. Canadian Journal of Earth Sciences, 1970, 7(3): 982-987. |
68 | Chen Shanxiong. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241. |
69 | Letts M G, Roulet N T, Comer N T, et al. Parametrization of peatland hydraulic properties for the Canadian land surface scheme[J]. Atmosphere-Ocean, 2000, 38(1): 141-160. |
70 | Clapp R B, Hornberger G M. Empirical equations for some soil hydraulic properties[J]. Water Resources Research, 1978, 14(4): 601-604. |
71 | Ding Yongjian. Introduction to cold region hydrology[M]. Beijing: Science Press, 2017. |
丁永建. 寒区水文导论[M]. 北京: 科学出版社, 2017. | |
72 | Liu Yang, Zhao Lin, Li Ren. Simulation of the soil water-thermal features within the active layer in tanggula region, Tibetan Plateau, by using SHAW model[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 280-290. |
刘杨, 赵林, 李韧. 基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J]. 冰川冻土, 2013, 35(2): 280-290. | |
73 | Hu Guojie, Zhao Lin, Li Ren, et al. The water-thermal characteristics of frozen soil under freeze-thaw based on CoupModel[J]. Scientia Geographica Sinica, 2013, 33(3): 356-362. |
胡国杰, 赵林, 李韧, 等. 基于COUPMODEL模型的冻融土壤水热耦合模拟研究[J]. 地理科学, 2013, 33(3): 356-362. | |
74 | Ma Qimin, Huang Yingbing, Zhuotong Nan, et al. Simulating one dimensional water-heat processes in a typical permafrost region in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 341-350. |
马启民, 黄滢冰, 南卓铜, 等. 青藏高原典型多年冻土区的一维水热过程模拟研究[J]. 冰川冻土, 2016, 38(2): 341-350. | |
75 | Qin Yanhui, Wu Tonghua, Li Ren, et al. Thermal condition of the active layer on the Qinghai-Tibet Plateau simulated by using the Model of GIPL2[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1153-1166. |
秦艳慧, 吴通华, 李韧, 等. 基于GIPL2模型的青藏高原活动层土壤热状况模拟研究[J]. 冰川冻土, 2018, 40(6): 1153-1166. | |
76 | Nicolsky D J, Romanovsky V E, Tipenko G S. Using in situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems[J]. The Cryosphere, 2007, 1(1): 41-58. |
77 | Xiong Jiansheng, Zhang Yu, Wang Shaoying, et al. Influence of soil moisture transmission scheme improvement in CLM 4.0 on simulation of land surface process in Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2014, 33(2): 323-336. |
熊建胜, 张宇, 王少影, 等. CLM 4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J]. 高原气象, 2014, 33(2): 323-336. | |
78 | Li Zhenkun. Improvement of parameterization of soil freezing and thawing process and its influence on climate simulation[D]. Nanjing: Nanjing University of Information Science & Technology, 2010. |
李震坤. 土壤冻融过程的参数化改进及其对气候模拟的影响[D]. 南京: 南京信息工程大学, 2010. |
[1] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[2] | 李智斌, 赵林, 刘广岳, 邹德富, 汪凌霄, 杨斌, 杜二计, 胡国杰, 周华云, 王翀, 幸赞品, 赵建婷, 殷秀峰, 迟鸿飞, 谭昌海, 陈文. 冻结季沱沱河源多年冻土区活动层土壤水分含量分析[J]. 冰川冻土, 2022, 44(1): 56-68. |
[3] | 周华云, 刘广岳, 杨斌, 邹德富, 赵林, 杜二计, 谭昌海, 陈文, 杨朝磊, 文浪, 旺扎多吉, 张浔浔, 肖瑶, 胡国杰, 李智斌, 谢昌卫, 汪凌霄, 刘世博. 长江上游沱沱河源区多年冻土发育特征[J]. 冰川冻土, 2022, 44(1): 69-82. |
[4] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[5] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[6] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[7] | 范星文,林战举,罗京,刘明浩,尹国安,高泽永. 高海拔多年冻土区路基工程行为对低温多年冻土长期影响的监测研究[J]. 冰川冻土, 2021, 43(5): 1323-1333. |
[8] | 王蓝翔,董慧科,龚平,王传飞,吴晓东. 多年冻土退化下碳、氮和污染物循环研究进展[J]. 冰川冻土, 2021, 43(5): 1365-1382. |
[9] | 冯晓琳,张艳林,常晓丽. 大兴安岭湿地多年冻土区活动层水热特征分析[J]. 冰川冻土, 2021, 43(5): 1468-1479. |
[10] | 温理想,郭蒙,黄书博,于方冰,钟超,周粉粉. 大兴安岭北部多年冻土区植被对活动层厚度变化的响应[J]. 冰川冻土, 2021, 43(5): 1531-1541. |
[11] | 张明礼, 王斌, 王得楷, 叶伟林, 郭宗云, 高樯, 岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[12] | 宋正民, 穆彦虎, 马巍, 俞祁浩, 栗晓林. 高海拔冻土区通风管路基管内风速及影响因素研究[J]. 冰川冻土, 2021, 43(4): 1111-1120. |
[13] | 黄克威, 王根绪, 宋春林, 俞祁浩. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. |
[14] | 刘宏超, 马俊杰, 李韧. 基于KNN机器学习方法对青藏高原唐古拉地区表层土壤水热状况的模拟[J]. 冰川冻土, 2021, 43(4): 1243-1252. |
[15] | 刘世博, 赵林, 汪凌霄, 邹德富, 周华云, 谢昌卫, 乔永平, 岳广阳, 史健宗. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021, 43(4): 964-975. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000