冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 299-306.doi: 10.7522/j.issn.1000-0240.2021.0131
刘红雨1(), 刘友存2,3(
), 孟丽红4, 焦克勤5, 朱明勇2,3, 陈燕奎2,3, 张鹏飞2,3
收稿日期:
2020-12-29
修回日期:
2021-05-09
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
刘友存
E-mail:liuhongyua@126.com;liuyoucun@126.com
作者简介:
刘红雨,硕士研究生,主要从事流域水资源与水环境研究. E-mail: liuhongyua@126.com
基金资助:
Hongyu LIU1(), Youcun LIU2,3(
), Lihong MENG4, Keqin JIAO5, Mingyong ZHU2,3, Yankui CHEN2,3, Pengfei ZHANG2,3
Received:
2020-12-29
Revised:
2021-05-09
Online:
2022-02-28
Published:
2022-03-28
Contact:
Youcun LIU
E-mail:liuhongyua@126.com;liuyoucun@126.com
摘要:
随着人口增长和经济社会的发展,水资源的供需矛盾日益增多,对水资源进行合理开发、高效利用、优化配置、全面节约、有效保护、综合治理是至关重要的新任务。熵权法是研究水资源可持续利用的重要方法,可以剔除指标体系中对评价结果贡献较小的指标,减少人为因素对于主观权重的影响,其计算结果真实准确,能够客观地反映水资源与水环境的现状,因此被广泛应用于水资源与水环境评价中,从而为水资源的高效利用及水环境的综合评价提供科学依据。本文对熵权法的由来及在水资源与水环境评价中的发展进程进行了探讨,重点对熵权法在水资源量、水资源承载力、水环境质量和水生态环境评价四个方面的应用进行了讨论和总结,并发现熵权法在水资源与水环境评价中有着良好的应用前景;同时,针对当前熵权法在水资源与水环境评价中存在的不足,提出了改进建议,为水资源与水环境评价的研究方向提供了新思路。除此之外,对熵权法的未来进行了展望:熵权法可与其他方法创新结合共同使用,构建合理全面的评价指标体系,在水资源利用发展趋势、时空格局演变等领域推广应用。
中图分类号:
刘红雨, 刘友存, 孟丽红, 焦克勤, 朱明勇, 陈燕奎, 张鹏飞. 熵权法在水资源与水环境评价中的研究进展[J]. 冰川冻土, 2022, 44(1): 299-306.
Hongyu LIU, Youcun LIU, Lihong MENG, Keqin JIAO, Mingyong ZHU, Yankui CHEN, Pengfei ZHANG. Research progress of entropy weight method in water resources and water environment[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 299-306.
表1
权重确定方法的优劣势对比"
权重确定方法 | 优点 | 缺点 |
---|---|---|
专家调查法 | 有利于发挥专家对评价指标重要性的经验判断力,进而最大限度地发挥专家的主动性和创造性 | 主观性过强,增加了决策者的负担 |
层次分析法 | 简洁实用、所需定量数据信息少;综合考虑各评价因子的贡献,评价结果能全面地反映综合情况 | 指标过多时数据统计量大,权重难以确定;特征值和特征向量精确求法较复杂 |
主成分分析法 | 可剔除评估指标之间的相关影响;可减少指标选择的工作量;计算工作量小,节省工作时间 | 要求前几个主成分贡献率较高;主成分因子负荷的符号有正负时,综合评价函数意义不明确 |
离差法 | 考虑了决策者的偏好,又在一定程度上保证了决策的客观性,同时充分利用各方案属性值的数量特征 | 需要遵循理论进行计算,但有时得到的计算结果没有实际意义,无法解释 |
熵权法 | 能够选取有效的指标,权重确定全部来源于决策矩阵,客观性更强;计算过程简便 | 只能和其他方法模型结合使用来计算权重,不能单独进行评价 |
表2
熵权法结合的模型"
方法 | 优点 | |
---|---|---|
熵权模糊物元模型 | 以事物名称N,特征c及其量值r组成的有序三元组R=(N,c,r)组作为描述事物的基本元。模糊物元即其中量值具有模糊性[ | 适用于水资源开发利用评价,评价结果更接近于实际情况,更为科学合理[ |
熵权改进TOPSIS模型 | 将评价对象的最优解和最劣解的评价公式进行标准化处理,用以确定具体指标实际值在该指标权重中所处的状况 | 能够充分利用原始数据、计算过程数据丢失量较小、几何意义直观且不受参考序列选择的干扰[ |
熵权改进DRASTIC模型 | DRASTIC评价指标根据各个指标脆弱性影响程度进行赋权,再加权求和[ | 该方法符合实际,操作简单,广泛应用于地下水脆弱性评价[ |
熵权扩展集对分析模型 | 将各评价指标与评价标准构成一个集对,计算不同评价因子对应的各级水质的联系度的比较,将加权平均联系度最大值所对应的水质级别作为最终评价结果[ | 相比于内梅罗指数法无法客观描述水质等级之间的过渡,基于熵权的集对分析法可以分析单个指标的数值和评价标准之间的数量关系[ |
熵权改进层次分析模型 | 采用三标度(0,1,2)对指标进行两两比较,建立比较矩阵,确定判断矩阵 | 该方法具有自调节功能,不需要进行一致性检验,其标度值具合理性和良好的判断传递性,在比较判断过程中准确性高[ |
熵权-正泰云模型 | 云模型数值特征值中Ex、En和He分别用于反映水质评价的不确定性、水质综合评价中概念的模糊性和云模型的离散程度 | 可以定性描述指标隶属度、权重等的中心值,实现了定性概念的定量转化,且兼顾模糊性与随机性的特征 |
熵权法灰色关联度模型 | 确定多指标决策域的集合后进行无量纲化求绝对差序列计算关联度,然后用熵权法确定权重 | 较对样本数量和规律性没有限定,避免量化结果与定性分析结果不符的情况 |
1 | Wei T. Evaluating index system and methods of regional water resources sustainable utilization[J]. Journal of Water Resources Research, 2016, 5(3): 246-254. |
2 | Jia Guiyi, Quan Yongqing, Li Zhiheng, et al. Geo-hazards assessment for the Gansu segment in Bailongjiang River Basin by using combination weighting method[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1227-1236. |
贾贵义, 全永庆, 黎志恒, 等. 基于组合赋权法的白龙江流域甘肃段地质灾害危险性评价[J]. 冰川冻土, 2014, 36(5): 1227-1236. | |
3 | Jian Fuhui, Song Xiaoyu, Yu Wenbao. Construction of the evaluation system of water asset price with fuzzy comprehensive assessment indexes: taking Zhangye Prefecture in Heihe River Basin as an example[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 567-572. |
简富缋, 宋晓谕, 虞文宝. 水资源资产价格模糊数学综合评价指标体系构建——以黑河中游张掖市为例[J]. 冰川冻土, 2016, 38(2): 567-572. | |
4 | Shenting Gang, Jia Tao, Deng Ying’er, et al. Assessment of groundwater quality in Hamatong drainage basin by using model of set pair analysis based on entropy weight method[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 23-27. |
刚什婷, 贾涛, 邓英尔, 等. 基于熵权法的集对分析模型在蛤蟆通流域地下水水质评价中的应用[J]. 长江科学院院报, 2018, 35(9): 23-27. | |
5 | Chen Wei, Xia Jianhua. An optimal weights combination method considering both subjective and objective weight information[J]. Mathematics in Practice and Theory, 2007, 37(1): 17-22. |
陈伟, 夏建华. 综合主、客观权重信息的最优组合赋权方法[J]. 数学的实践与认识, 2007, 37(1): 17-22. | |
6 | Yang Yuhong. Elements of information theory[J]. Journal of the American Statistical Association, 2008, 103(481): 429. |
7 | Liu Youcun, Zou Jieping, Yin Xiaoling, et al. Review on HSPF model in watershed hydrology and water environment research[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 225-232. |
刘友存, 邹杰平, 尹小玲, 等. HSPF模型在流域水文与水环境研究中的进展[J]. 冰川冻土, 2021, 43(1): 225-232. | |
8 | Gao Hongkai, Zhao Fang. A review of global hydrological models: The opportunities, challenges and outlook[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 224-233. |
高红凯, 赵舫. 全球尺度水文模型: 机遇、挑战与展望[J]. 冰川冻土, 2020, 42(1): 224-233. | |
9 | Wan Zhehui, Wang Shen, Feng Sunlin, et al. Application of entropy-weight Bayesian model in water environment quality assessment of Shanxi Reservoir[J]. Water Saving Irrigation, 2018(3): 55-57, 62. |
万哲慧, 王珅, 冯孙林, 等. 熵权贝叶斯模型在珊溪水库水环境质量评价的应用[J]. 节水灌溉, 2018(3): 55-57, 62. | |
10 | Zhang Jian, Shu Longcang, Zhang Chen, et al. Comprehensive index based entropy and weight for groundwater quality evaluation[J]. Water Resources and Power, 2010, 28(8): 30-32. |
张鉴, 束龙仓, 张琛, 等. 基于熵权的综合指数法在地下水水质评价中的应用[J]. 水电能源科学, 2010, 28(8): 30-32. | |
11 | Wolff S L. Rudolph Clausius: a pioneer of the modern theory of heat[J]. Vacuum, 2013, 90: 102-108. |
12 | Liu Huawen. Research on feature selection algorithm based on information entropy[D]. Changchun: Jilin University, 1984. |
刘华文. 基于信息熵的特征选择算法研究[D]. 长春: 吉林大学, 1984. | |
13 | Xiao Defeng. Fuzzy random information entropy of criteria for environmental quality[J]. Acta Scientiae Circumstantiae, 1986, 6(2): 157-165. |
肖德锋. 环境质量评价中的模糊信息熵原理[J]. 环境科学学报, 1986, 6(2): 157-165. | |
14 | Huang Kezhong, Jiang Tao. Maximum communication entropy theory of transverse spreading of the plume in uniform open-channel flow[J]. Journal of Hydraulic Engineering, 1996, 27(5): 61-68. |
黄克中, 江涛. 明渠均匀流污染带的最大信息熵理论[J]. 水利学报, 1996, 27(5): 61-68. | |
15 | Zhang Yan, Yang Zhifeng, He Mengchang, et al. Analyses on evolution of urban complex ecosystem based on information entropy[J]. Acta Scientiae Circumstantiae, 2005, 25(8): 1127-1134. |
张妍, 杨志峰, 何孟常, 等. 基于信息熵的城市生态系统演化分析[J]. 环境科学学报, 2005, 25(8): 1127-1134. | |
16 | Xie Tao, Yin Qianfeng, Gao He, et al. Risk assessment of glacial debris flow along the Tianshan Highway based on geomorphic information entropy[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 400-406. |
谢涛, 尹前锋, 高贺, 等. 基于地貌信息熵的天山公路冰川泥石流危险性评价[J]. 冰川冻土, 2019, 41(2): 400-406. | |
17 | Ogwang T, Cho D I. Olympic rankings based on objective weighting schemes[J]. Journal of Applied Statistics, 2021, 48(3): 573-582. |
18 | Li Yanli, Su Weici, Yang Ji, et al. Assessment of water environment security in Chongqing using Fussy Evaluation Model based on Entropy Weight Method[J]. Yangtze River, 2017, 48(9): 25-29. |
李艳丽, 苏维词, 杨吉, 等. 基于熵权模糊综合模型的重庆市水环境安全评价[J]. 人民长江, 2017, 48(9): 25-29. | |
19 | de P Rodrigues da Silva V, Belo Filho A F, Singh V P, et al. Entropy theory for analysing water resources in northeastern region of Brazil[J]. Hydrological Sciences Journal, 2017, 62(7): 1029-1038. |
20 | Zhi Lushuang, Xue Huifeng. A study on vulnerability of urban water resource based on entropy weight method: a case study of Guangdong Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 322-329. |
职璐爽, 薛惠锋. 基于熵权法的城市水资源脆弱性研究——以广东省为例[J]. 水土保持通报, 2018, 38(5): 322-329. | |
21 | Wang Yan, Meng Lingshuang. Risk evaluation on water resources carrying capacity based on entropy weighting ideal point method[J]. Yangtze River, 2019, 50(4): 142-146, 207. |
王彦, 孟令爽. 基于熵权理想点的水资源承载力风险评价[J]. 人民长江, 2019, 50(4): 142-146, 207. | |
22 | Shen Yirong, Xie Jiancang. Fuzzy matter-element model for evaluating of water safety based on entropy weight and TOPSIS and application[J]. Systems Engineering, 2014, 32(7): 143-148. |
申毅荣, 解建仓. 基于熵权和TOPSIS法的水安全模糊物元评价模型研究及其应用[J]. 系统工程, 2014, 32(7): 143-148. | |
23 | Du Xianzeng, Yuan Yuliang, Meng Yu, et al. Comprehensive health evaluation of Huaihe River mainstream based on compound fuzzy matter element-entropy weight combination model[J]. Water Resources Protection, 2021, 37(3): 145-151. |
杜现增, 袁榆梁, 孟钰, 等. 基于复合模糊物元-熵权组合模型的淮河干流健康综合评价[J]. 水资源保护, 2021, 37(3): 145-151. | |
24 | Xu Yang, Chen Jing, Xia Huan, et al. Evaluation of water resource carrying capacity in Huai’an City based on DPSR-improved TOPSIS model[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 47-52, 62. |
许杨, 陈菁, 夏欢, 等. 基于DPSR-改进TOPSIS模型的淮安市水资源承载力评价[J]. 水资源与水工程学报, 2019, 30(4): 47-52, 62. | |
25 | Zhang Zhen, Wen Zhonghui, Lu Chengpeng, et al. A modified DRASTIC model for assessment of groundwater vulnerability and its application[J]. Water Resources Protection, 2014, 30(6): 13-18. |
张珍, 温忠辉, 鲁程鹏, 等. 改进的DRASTIC地下水脆弱性评价模型及应用[J]. 水资源保护, 2014, 30(6): 13-18. | |
26 | Yu Linhong, Tao Zhibin, Hu Shengtao, et al. Application of DRASTIC model to groundwater vulnerability assessment[J]. Yellow River, 2020, 42(): 45-46, 50. |
于林弘, 陶志斌, 扈胜涛, 等. DRASTIC模型在地下水脆弱性评价中的应用[J]. 人民黄河, 2020, 42(): 45-46, 50. | |
27 | Meng Xianmeng, Hu Heping. Application of set pair analysis model based on entropy weight to comprehensive evaluation of water quality[J]. Journal of Hydraulic Engineering, 2009, 40(3): 257-262. |
孟宪萌, 胡和平. 基于熵权的集对分析模型在水质综合评价中的应用[J]. 水利学报, 2009, 40(3): 257-262. | |
28 | Wang Wenchuan, Li Qingmin, Xu Dongmei, et al. Water quality evaluation model based on set pair analysis and triangular fuzzy number coupling[J]. Water Resources Planning and Design, 2018(11): 44-47. |
王文川, 李庆敏, 徐冬梅, 等. 基于集对分析与三角模糊数耦合的水质评价模型[J]. 水利规划与设计, 2018(11): 44-47. | |
29 | Li Yuping, Zhu Chen, Zhang Luxuan, et al. Ecological security assessment and countermeasures of water environment based on improved analytic hierarchy process: a case study of Xingtai City[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2): 310-316. |
李玉平, 朱琛, 张璐璇, 等. 基于改进层次分析法的水环境生态安全评价与对策——以邢台市为例[J]. 北京大学学报(自然科学版), 2019, 55(2): 310-316. | |
30 | Meng Xianmeng, Shu Longcang, Lu Yaoru. Modified DRASTIC model for groundwater vulnerability assessment based on entropy weight[J]. Journal of Hydraulic Engineering, 2007, 38(1): 94-99. |
孟宪萌, 束龙仓, 卢耀如. 基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J]. 水利学报, 2007, 38(1): 94-99. | |
31 | Luo Jungang, Xie Jiancang, Ruan Benqing. Fuzzy comprehensive assessment model for water shortage risk based on entropy weight[J]. Journal of Hydraulic Engineering, 2008, 39(9): 1092-1097, 1104. |
罗军刚, 解建仓, 阮本清. 基于熵权的水资源短缺风险模糊综合评价模型及应用[J]. 水利学报, 2008, 39(9): 1092-1097, 1104. | |
32 | Li Feng, Chen Yaning, Li Weihong, et al. The application of set pair analysis based on entropy weight to evaluation of sustainable water resources utilization:a case study in the three sources of Tarim River[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 723-730. |
黎枫, 陈亚宁, 李卫红, 等. 基于熵权的集对分析法在水资源可持续利用评价中的应用——以塔里木河三源流地区为例[J]. 冰川冻土, 2010, 32(4): 723-730. | |
33 | Li X G, Wei X, Huang Q. Comprehensive entropy weight observability-controllability risk analysis and its application to water resource decision-making[J]. Water SA, 2012, 38(4): 573-580. |
34 | Won K, Chung E S, Choi S U. Parametric assessment of water use vulnerability variations using SWAT and fuzzy TOPSIS coupled with entropy[J]. Sustainability, 2015, 7(9): 12052-12070. |
35 | Liu Qianqian, Chen Yan. Assessing the vulnerability of basin water resources based on entropy weight method: a case study of Huaihe River basin[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(9): 10-17. |
刘倩倩, 陈岩. 基于熵权法的流域水资源脆弱性评价——以淮河流域为例[J]. 长江科学院院报, 2016, 33(9): 10-17. | |
36 | He Guohua, Wang Ni, Xie Jiancang, et al. Establishment and application of fuzzy comprehensive assessment model for harmony of water allocation based on entropy weight[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 214-220. |
何国华, 汪妮, 解建仓, 等. 基于熵权的水资源配置和谐性模糊综合评价模型的建立及应用[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 214-220. | |
37 | Zhang Jie, Deng Xiaojun, Zhai Luxin, et al. Fuzzy comprehensive evaluation of water resources sustainable utilization based on entropy weight in Guangxi[J]. Research of Soil and Water Conservation, 2018, 25(5): 385-389, 396. |
张杰, 邓晓军, 翟禄新, 等. 基于熵权的广西水资源可持续利用模糊综合评价[J]. 水土保持研究, 2018, 25(5): 385-389, 396. | |
38 | Wang Youzhen. Application of entropy weight matter-element model in water resources safety evaluation: a case study in Taiyuan City[J]. Technical Supervision in Water Resources, 2018, 26(6): 4-7. |
王有振. 熵权物元模型在水资源安全评价中的应用——以太原市为例[J]. 水利技术监督, 2018, 26(6): 4-7. | |
39 | Liu Xiaomin, Liu Zhihui, Sun Tianhe. Evaluation of water resources vulnerability in Hebei Province based on entropy weight method[J]. Water Resources and Power, 2019, 37(4): 33-35, 39. |
刘晓敏, 刘志辉, 孙天合. 基于熵权法的河北省水资源脆弱性评价[J]. 水电能源科学, 2019, 37(4): 33-35, 39. | |
40 | Cui Dan, Li Rui, Chen Yan, et al. An evaluation of the water environmental carrying capacity using structural equation modeling: a case study of the upstream areas of Xiaoxia Bridge Section in Huangshui River basin[J]. Acta Scientiae Circumstantiae, 2019, 39(2): 624-632. |
崔丹, 李瑞, 陈岩, 等. 基于结构方程的流域水环境承载力评价——以湟水流域小峡桥断面上游为例[J]. 环境科学学报, 2019, 39(2): 624-632. | |
41 | Chen Nanxiang, Wang Yanhui. Fuzzy comprehensive evaluation of sustainable carrying capacity of water resources based on entropy weight[J]. Yellow River, 2007, 29(10): 44-46. |
陈南祥, 王延辉. 基于熵权的水资源可持续承载力模糊综合评价[J]. 人民黄河, 2007, 29(10): 44-46. | |
42 | Lv Ping, Liu Dong, Zhao Feifei. Comprehensive evaluation of water resources carrying capacity in Jiansanjiang branch bureau[J]. Advanced Materials Research, 2011, 204: 834-837. |
43 | Zhou Rongxing, Pan Zhengwei, Jin Juliang, et al. Forewarning model of regional water resources carrying capacity based on combination weights and entropy principles[J]. Entropy, 2017, 19(11): 574. |
44 | Jiang Rucheng, Gu Shixiang. Application of entropy weight-normal cloud model in carrying capacity evaluation of water ecological environment in Yunnan Province[J]. Journal of Water Resources and Water Engineering, 2018, 29(3): 118-123. |
蒋汝成, 顾世祥. 熵权法-正态云模型在云南省水生态承载力评价中的应用[J]. 水资源与水工程学报, 2018, 29(3): 118-123. | |
45 | Su Pinren, Guan Dongjie, Yang Sha. Dynamic change evaluation of water resources capacity in Karst area of Chongqing[J]. Journal of Green Science and Technology, 2018(8): 203-208. |
苏品任, 官冬杰, 杨莎. 重庆喀斯特地区水资源承载力动态变化评价[J]. 绿色科技, 2018(8): 203-208. | |
46 | Liu Wenwen. Application of fuzzy entropy weight comprehensive evaluation model in comprehensive evaluation of water resources carrying capacity in Shenyang City[J]. Heilongjiang Hydraulic Science and Technology, 2018, 46(9): 130-134. |
刘雯雯. 模糊熵权综合评价模型在沈阳市水资源承载力综合评价中的应用[J]. 黑龙江水利科技, 2018, 46(9): 130-134. | |
47 | Chen Haitao, Xu Jiahao. Evaluation of water resources carrying capacity in Henan Province based on entropy-weight fuzzy comprehensive evaluation model[J]. Pearl River, 2020, 41(1): 48-53, 116. |
陈海涛, 徐嘉豪. 基于熵权模糊综合评价模型的河南省水资源承载力评价[J]. 人民珠江, 2020, 41(1): 48-53, 116. | |
48 | Qian Bao, Zhu Yuxin, Wang Yuxiao, et al. Can entropy weight method correctly reflect the distinction of water quality indices? [J]. Water Resources Management, 2020, 34(11): 3667-3674. |
49 | Huang Shaobin. Application of water-environmental evaluation in theory of entropy[J]. Environmental Science and Management, 2012, 37(8): 179-182, 194. |
黄少彬. 基于熵理论的河流水环境评价及应用[J]. 环境科学与管理, 2012, 37(8): 179-182, 194. | |
50 | Li Bing, Yang Guishan, Wan Rongrong, et al. Dynamic water quality evaluation based on fuzzy matter-element model and functional data analysis, a case study in Poyang Lake[J]. Environmental Science and Pollution Research International, 2017, 24(23): 19138-19148. |
51 | Meng Dongfang, Tong Feng, Wang Xiying. Application of entropy weight extended set pair analysis model on Xi'an City shallow groundwater quality assessment[J]. Coal Geology of China, 2018, 30(11): 55-60. |
孟东芳, 童锋, 王喜英. 熵权扩展集对分析模型在西安市浅层地下水水质评价中的应用[J]. 中国煤炭地质, 2018, 30(11): 55-60. | |
52 | Hasan M S U, Rai A K. Groundwater quality assessment in the Lower Ganga Basin using entropy information theory and GIS[J]. Journal of Cleaner Production, 2020, 274: 123077. |
53 | Sahoo M M, Patra K C, Swain J B, et al. Evaluation of water quality with application of Bayes’ rule and entropy weight method[J]. European Journal of Environmental and Civil Engineering, 2017, 21(6): 730-752. |
54 | Ukah B U, Ameh P D, Egbueri J C, et al. Impact of effluent-derived heavy metals on the groundwater quality in Ajao industrial area, Nigeria: An assessment using entropy water quality index (EWQI)[J]. International Journal of Energy and Water Resources, 2020, 4(3): 231-244. |
55 | Amiri V, Kamrani S, Ahmad A, et al. Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd Province, central plateau of Iran[J]. Environmental Science and Pollution Research, 2021, 28(1): 1108-1130. |
56 | Luo Bin, Jiang Shizhong, Zheng Yuerong, et al. Application of water poverty index based on the entropy weight method to water security evaluation of Sichuan Province[J]. Journal of Sichuan Normal University (Natural Science), 2016, 39(4): 608-611. |
罗斌, 姜世中, 郑月蓉, 等. 基于熵权法的水匮乏指数在四川省水安全评价中的应用[J]. 四川师范大学学报(自然科学版), 2016, 39(4): 608-611. | |
57 | Ding Xiaowen, Chong Xiao, Bao Zhengfeng, et al. Fuzzy comprehensive assessment method based on the entropy weight method and its application in the water environmental safety evaluation of the Heshangshan drinking water source area, Three Gorges reservoir area, China[J]. Water, 2017, 9(5): 329. |
58 | Tian Junfeng, Wu Li. Variable fuzzy sets based on entropy in regional water security evaluation[J]. Henan Science, 2018, 36(5): 676-682. |
田俊峰, 吴丽. 基于熵权的模糊可变集合在区域水安全评价中的应用[J]. 河南科学, 2018, 36(5): 676-682. | |
59 | Zhang Youxian, Li Erqiang, Luo Dongxia, et al. Fuzzy comprehensive evaluation of water environment safety of Lanzhou based on AHP-entropy weight method[J]. Journal of Safety and Environment, 2020, 20(2): 709-718. |
张有贤, 李二强, 罗东霞, 等. 基于AHP-熵权法的兰州市水环境安全模糊综合评价[J]. 安全与环境学报, 2020, 20(2): 709-718. | |
60 | Singh K R, Dutta R, Kalamdhad A S, et al. Information entropy as a tool in surface water quality assessment[J]. Environmental Earth Sciences, 2019, 78(1): 1-12. |
[1] | 苗祺, 牛富俊, 林战举, 罗京. 季节冻土区高铁路基冻胀研究进展及展望[J]. 冰川冻土, 2019, 41(3): 669-679. |
[2] | 雷乐乐, 谢艳丽, 王大雁, 陈敦, 靳潇. 冻土静力学室内试验研究进展[J]. 冰川冻土, 2018, 40(4): 802-811. |
[3] | 何瑞霞, 金会军, 赵淑萍, 邓友生. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126. |
[4] | 苏芳, 李景坤, 许韶华. 基于BP神经网络的农户生计风险评价模型[J]. 冰川冻土, 2017, 39(6): 1381-1390. |
[5] | 汪丁建, 唐辉明, 张雅慧, 林成远, 赵萌. 粗粒土试验与力学特性研究现状[J]. 冰川冻土, 2016, 38(4): 943-954. |
[6] | 简富缋, 宋晓谕, 虞文宝. 水资源资产价格模糊数学综合评价指标体系构建——以黑河中游张掖市为例[J]. 冰川冻土, 2016, 38(2): 567-572. |
[7] | 高黎明, 张耀南, 冯起. 河西内陆河地区径流模型概述[J]. 冰川冻土, 2016, 38(1): 259-269. |
[8] | 何瑞霞, 金会军, 马富廷, 刘辅承, 肖东辉. 大兴安岭北部霍拉盆地多年冻土及寒区环境研究的最新进展[J]. 冰川冻土, 2015, 37(1): 109-117. |
[9] | 尹小娟, 宋晓谕, 蔡国英. 湿地生态系统服务估值研究进展[J]. 冰川冻土, 2014, 36(3): 759-766. |
[10] | 杨西锋, 尤哲敏, 牛富俊, 马巍. 固化剂对盐渍土物理力学性质的固化效果研究进展[J]. 冰川冻土, 2014, 36(2): 376-385. |
[11] | 宁宝英, 张志强, 何元庆. 基于文献统计的黑河流域研究重点和热点学科演变分析[J]. 冰川冻土, 2013, 35(2): 504-512. |
[12] | 伍修锟, 毛文梁, 台喜生, 张威, 刘光琇, 陈拓, 龙昊知, 张宝贵, 陈年来. 冰川前沿裸露地微生物生态学研究进展[J]. 冰川冻土, 2013, 35(1): 217-223. |
[13] | 周尚哲. 阿尔卑斯山地区第四纪冰川最新研究[J]. 冰川冻土, 2012, 34(5): 1127-1133. |
[14] | 邓振镛, 张强, 王润元, 高伟东, 徐金芳, 孙兰东, 姚晓英, 刘明春. 西北地区特色作物对气候变化响应及应对技术的研究进展[J]. 冰川冻土, 2012, 34(4): 855-862. |
[15] | 余光明, 徐建中, 任贾文. 青藏高原大气气溶胶研究进展[J]. 冰川冻土, 2012, 34(3): 609-617. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000