冰川冻土 ›› 2021, Vol. 43 ›› Issue (2): 390-404.doi: 10.7522/j.issn.1000-0240.2021.0135
刘莎1(), 李向应2,3(
), 杨船洋1, 韩添丁4, 井哲帆4, 朱永华1
收稿日期:
2020-11-18
修回日期:
2021-03-19
出版日期:
2021-04-30
发布日期:
2022-08-11
通讯作者:
李向应
E-mail:liusha@hhu.edu.cn;shaanxilxy@163.com
作者简介:
刘莎,硕士研究生,主要从事冰川水化学研究. E-mail: liusha@hhu.edu.cn
基金资助:
Sha LIU1(), Xiangying LI2,3(
), Chuanyang YANG1, Tianding HAN4, Zhefan JING4, Yonghua ZHU1
Received:
2020-11-18
Revised:
2021-03-19
Online:
2021-04-30
Published:
2022-08-11
Contact:
Xiangying LI
E-mail:liusha@hhu.edu.cn;shaanxilxy@163.com
摘要:
硅(Si)是硅藻等海洋生物必需的营养元素,在海洋生态系统和碳循环方面扮演着重要角色。在全球变暖背景下,冰川加速消融,融水径流量快速增加,流域硅酸盐风化作用逐渐增强,导致大量Si元素随着融水释放出来并进入下游,很可能影响陆地与海洋生态系统生产力、碳循环并反馈气候变化。当前与冰川消融有关的Si释放及其影响研究已成为国际热点科学问题之一。通过回顾冰川径流中Si浓度及其δ30Si的最新研究成果,分析了Si浓度的空间变化特征,发现冰川径流的Si浓度受采样方法、径流量、基岩特征等因子的共同影响。在总结该领域现存问题的基础上,认为未来急需加强冰川径流Si的野外监测,综合利用多种同位素手段来厘清冰川径流Si的迁移转化过程和输移规律,评估因冰川消融而进入下游生态系统的Si通量,进而为冰川Si的生态及气候影响评估提供科学指导。
中图分类号:
刘莎, 李向应, 杨船洋, 韩添丁, 井哲帆, 朱永华. 全球冰川径流中硅的研究进展[J]. 冰川冻土, 2021, 43(2): 390-404.
Sha LIU, Xiangying LI, Chuanyang YANG, Tianding HAN, Zhefan JING, Yonghua ZHU. A review of bioavailable silica from glacial runoff globally[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 390-404.
附表1
全球冰川径流中DSi和ASi的平均浓度(标准偏差)和通量及其变化范围 (注:N/A指没有数据;1 Mmol=106 mol;a选自C组数据,b选自附件资料,c取“N”冰川末端的资料,d指平均浓度与年径流量的乘积获得的通量,e指流量加权平均浓度,f选自Sveeja位置的资料,g选自表4中主要融水的资料,h选自USS(上游采样点)的资料,i取自采样点E的资料,j指Si的产量与流域面积的乘积获得的通量,k指Q1和Q2采样点资料的平均值,l选取表1中冰下径流资料,m选取表1中冰下径流2和冰下径流4的资料,n选取R10和R11采样点资料,o选取G1站点的资料;GP指格陵兰冰盖,IC指冰岛,SJ指斯瓦尔巴德,SC指斯堪的纳维亚,AL指阿拉斯加,CE指欧洲中部,AN指南极/亚南极,AC指加拿大北极,WCU指加拿大西部/美国,AS指亚洲;NC指硝酸纤维素膜,CA指醋酸纤维素膜,PVDF指聚偏氟乙烯膜,PC指聚碳酸酯膜,NF指尼龙膜,CE指纤维素酯膜,MC指纤维素膜,GF指玻璃纤维素膜。)"
冰川名称 | 面积/km2 | 流量/(km3∙a-1) | 采样时间 (年/月) | 滤膜 类型 | 孔径/μm | 样品数/个 | DSi浓度(SD)/(μmol∙L-1) | 变化范围/(μmol∙L-1) | DSi通量(SD)/(Mmol∙a-1) | 变化范围/(Mmol∙a-1) | 文献 来源 |
---|---|---|---|---|---|---|---|---|---|---|---|
Kangerdlugssuaq冰山(GP) | N/A | 15 | N/A | N/A | 0.40 | N/A | 9.14 (N/A) | N/A | 137 (N/A) | N/A | [ |
Godthåbs冰山(GP) | N/A | 10 | 2013/8 | NC | 0.45 | 1 | 4.7 (N/A) | 0.1~18 | 47 (N/A) | 1~180 | [ |
Sermilik冰山(GP) | N/A | N/A | 2014/7 | PC | 0.40 | 5 | 10 (N/A) | 0~20 | N/A | N/A | [ |
Kuannersuit冰川(GP) | 258 | 0.65 | 2001/7 | NC | 0.45 | 9 | 114a (N/A) | 71~164a | 70.7a (N/A) | N/A | [ |
Kuannersuit冰川(GP) | 258 | N/A | 2015/8 | NC | 0.45 | 1 | 33.8b (N/A) | N/A | N/A | N/A | [ |
Watson河(GP) | 9743 | 3.67 | 2007/7 | NC | 0.45 | 23 | 35.7 (N/A) | N/A | 140 (N/A) | N/A | [ |
Watson河(GP) | 9743 | 2.86 | 2008/7-8 | NC | 0.45 | 28 | 21.4 (N/A) | N/A | 68 (N/A) | N/A | [ |
Watson河(GP) | 9743 | 2.57 | 2009/7 | NC | 0.45 | 13 | 42.9 (N/A) | N/A | 108 (N/A) | N/A | [ |
Watson河(GP) | 9743 | N/A | 2017/9 | NC | 0.45 | 1 | 33.2 (N/A) | N/A | N/A | N/A | [ |
“N”冰川(GP) | 5 | 0.0064 | 2008/5-7 | CA | 0.22 | 22 | 14.3c (N/A) | 3.7~45.4c | 0.09d | 0.02~0.3d | [ |
Leverett冰川(GP) | 600 | 2.03 | 2012/5-9 | NC | 0.45 | 25 | 9.6e (N/A) | 0.8~41.4e | 19.5d (N/A) | 1.6~84d | [ |
Leverett冰川(GP) | 600 | 1.45 | 2015/5-7 | NC | 0.45 | 130 | 20.8e (N/A) | 9.2~56.9e | 30d (N/A) | 13~83d | [ |
Russell冰川GP) | N/A | N/A | 2013/8 | NC | 0.45 | 4 | 5.5 (N/A) | 4.7~7 | N/A | N/A | [ |
“Disko 6”冰川(GP) | 1.5 | N/A | 2015/8 | NC | 0.45 | 1 | 15.8b (N/A) | N/A | N/A | N/A | [ |
“Disko 10”冰川(GP) | 7 | N/A | 2015/8 | NC | 0.45 | 1 | 23.3b (N/A) | N/A | N/A | N/A | [ |
“Disko 11”冰川(GP) | 9.7 | N/A | 2015/8 | NC | 0.45 | 1 | 7.9b (N/A) | N/A | N/A | N/A | [ |
“Disko 13”冰川(GP) | 18 | N/A | 2015/8 | NC | 0.45 | 1 | 34.8b (N/A) | N/A | N/A | N/A | [ |
Kiattuut Sermiat冰川(GP) | 36 | 0.22 | 2013/4-8 | NC | 0.45 | 38 | 22.2e (N/A) | 14.8~41.8e | 4.9d (N/A) | 3.2~9.2d | [ |
Qoorqup Sermia冰川(GP) | N/A | N/A | 2013/7 | PVDF | 0.20 | 4 | 26.6 (N/A) | 19.8~36 | N/A | N/A | [ |
Godthåbs峡湾(GP) | 2013 | 20 | 2013/8 | NC | 0.45 | N/A | 33 (N/A) | N/A | 660 (N/A) | N/A | [ |
Kangaarsarsuup冰川(GP) | N/A | N/A | 2013/8 | PVDF | 0.20 | 3 | 18.3 (N/A) | 17.6~19.3 | N/A | N/A | [ |
“G”冰川(GP) | N/A | N/A | 2013/8 | PVDF | 0.20 | 5 | 6.8 (N/A) | 5.5~8.9 | N/A | N/A | [ |
Young Sound峡湾(GP) | 390 | 1.5 | 2013/8 | NC | 0.45 | N/A | 30 (N/A) | 11~61 | 45 (N/A) | 16.5~91.5 | [ |
Drangajokull冰川(IC) | 41.9 | N/A | 2016/8 | NC | 0.45 | 1 | 13.6b (N/A) | N/A | N/A | N/A | [ |
Langjokull冰川(IC) | 131 | N/A | 2016/8 | NC | 0.45 | 1 | 49.4b (N/A) | N/A | N/A | N/A | [ |
Solheimajokull冰川(IC) | 55.1 | N/A | 2016/8 | NC | 0.45 | 1 | 94.8b (N/A) | N/A | N/A | N/A | [ |
Skaftrafelljokull冰川(IC) | 90.5 | N/A | 2016/8 | NC | 0.45 | 1 | 39.3b (N/A) | N/A | N/A | N/A | [ |
Eyjabakkajokull冰川(IC) | 130 | N/A | 2016/8 | NC | 0.45 | 1 | 16.5b (N/A) | N/A | N/A | N/A | [ |
Vatnajökull冰川(IC) | 8100 | 3.15 | 2011/7 | CA | 0.20 | 1 | 68f (N/A) | N/A | N/A | N/A | [ |
Nansenbreen冰川(SJ) | 38.1 | N/A | 2016/8 | NC | 0.45 | 1 | 4.56b (N/A) | N/A | N/A | N/A | [ |
Sefstrombreen冰川(SJ) | 133 | N/A | 2016/8 | NC | 0.45 | 1 | 3.31b (N/A) | N/A | N/A | N/A | [ |
Ebbabreen冰川(SJ) | 1.68 | N/A | 2016/8 | NC | 0.45 | 1 | 3.03b (N/A) | N/A | N/A | N/A | [ |
Scott Turnerbreen冰川(SJ) | 12.8 | 0.0066 | 1993/6-7 | NC | 0.45 | 72 | 3.9g (1.5) | 2.3~8.5g | 0.03d (0.01) | 0.02~0.06d | [ |
Rieperbreen冰川(SJ) | 4.05 | N/A | 2007/6-9 | NC | 0.45 | 16 | 19.3h (9.6) | N/A | N/A | N/A | [ |
Austerdalsbreen冰川(SC) | 20.9 | N/A | 2016/9 | NC | 0.45 | 1 | 26.6b (N/A) | N/A | N/A | N/A | [ |
Styggedalsbreen冰川(SC) | 2.06 | N/A | 2016/9 | NC | 0.45 | 1 | 10.7b (N/A) | N/A | N/A | N/A | [ |
Boverbreen冰川(SC) | 9.58 | N/A | 2016/9 | NC | 0.45 | 1 | 4.95b (N/A) | N/A | N/A | N/A | [ |
Eagle冰川(AL) | 40.5 | N/A | 2017/6 | NC | 0.45 | 1 | 18.4b (N/A) | N/A | N/A | N/A | [ |
Herbert冰川(AL) | 61.2 | N/A | 2017/6 | NC | 0.45 | 1 | 13.5b (N/A) | N/A | N/A | N/A | [ |
Mendenhall冰川(AL) | 109 | N/A | 2017/6 | NC | 0.45 | 1 | 17.4b (N/A) | N/A | N/A | N/A | [ |
Lemon冰川(AL) | 9.35 | N/A | 2017/6 | NC | 0.45 | 1 | 24.6b (N/A) | N/A | N/A | N/A | [ |
Bench冰川(AL) | N/A | N/A | 1996/6 | N/A | 0.45 | N/A | 22 (2) | N/A | N/A | N/A | [ |
附表2
全球不同冰川区DSi的平均浓度(标准偏差)及平均产量(数据来源见附表1)"
地区 | DSi浓度/(μmol∙L-1) | DSi产量/(kg∙km-2∙a-1) |
---|---|---|
亚洲 | 31.55(20.3) | 2 351 |
冰岛 | 46.9(31.1) | N/A |
斯瓦尔巴 | 6.8(7.0) | 57 |
斯堪的纳维亚 | 14.1(11.2) | N/A |
阿拉斯加 | 21.5 6.8) | 2 224 |
欧洲中部 | 15.0(N/A) | 916 |
加拿大北极 | 4.3(N/A) | N/A |
加拿大西部/美国 | 4.3(1.3) | 1 177 |
格陵兰 | 26.7(22.8) | 980[ |
南极/亚南极 | 6.7(N/A) | N/A |
全球(冰川) | 26.5(21.7) | 1 722 |
全球(冰盖) | 27.7(22.5) | 980[ |
全球(冰山) | 8.0(2.8) | N/A |
附表3
全球冰川径流中δD30Si和δA30Si平均值(标准偏差)及变化范围"
冰川 | 面积/km2 | 采样时间/ (年/月) | 样品数/个 | δD30Si/‰ | 变化范围/‰ | δA30Si/‰ | 变化范围/‰ | 文献来源 |
---|---|---|---|---|---|---|---|---|
Kiattuut Sermiat冰川(GP) | 36 | 2013/4-8 | 18 | 0.41a (0.10) | 0.16~1.01 | -0.44a (0.06) | -0.56~-0.38 | [ |
Leverett冰川(GP) | 600 | 2015/5-7 | 20 | -0.25a (0.12) | -0.55~0.87a | -0.22a (0.06) | -0.32~0.21 | [ |
“Disko 6”冰川(GP) | 1.5 | 2015/8 | 1 | 0.22b (N/A) | N/A | -0.55 (N/A) | N/A | [ |
“Disko 11”冰川(GP) | 9.7 | 2015/8 | 1 | -0.36b (N/A) | N/A | -0.61 (N/A) | N/A | [ |
“Disko 10”冰川(GP) | 7 | 2015/8 | 1 | -0.15b (N/A) | N/A | -0.48 (N/A) | N/A | [ |
“Disko 13”冰川(GP) | 18 | 2015/8 | 1 | 0.24b (N/A) | N/A | -0.67 (N/A) | N/A | [ |
Kuannersuit冰川(GP) | 103 | 2015/8 | 1 | -0.13b (N/A) | N/A | N/A | N/A | [ |
Vatnajokull冰川(IC) | 111 | 2003/9, 2005/8 | 13 | 0.75b (N/A) | N/A | N/A | N/A | [ |
Myrdalsjokull冰川(IC) | 122 | 2003/9, 2005/8 | 15 | 0.41b (N/A) | N/A | N/A | N/A | [ |
Drangajokull冰川(IC) | 41.9 | 2016/8 | 1 | -0.14b (N/A) | N/A | -0.36 (N/A) | N/A | [ |
Langjokull冰川(IC) | 131 | 2016/8 | 1 | -0.58b (N/A) | N/A | -0.10 (N/A) | N/A | [ |
Soheimajokull冰川(IC) | 55.1 | 2016/8 | 1 | 0.78b (N/A) | N/A | -0.06 (N/A) | N/A | [ |
Skaftrafelljokull冰川(IC) | 90.5 | 2016/8 | 1 | -0.09b (N/A) | N/A | -0.18 (N/A) | N/A | [ |
Eyjabakkajokull冰川(IC) | 130 | 2016/8 | 1 | -0.51b (N/A) | N/A | -0.05 (N/A) | N/A | [ |
Eagle冰川(AL) | 40.5 | 2017/6 | 1 | 0.33b (N/A) | N/A | N/A | N/A | [ |
Herbert冰川(AL) | 61.2 | 2017/6 | 1 | 0.49b (N/A) | N/A | -0.62 (N/A) | N/A | [ |
Mendenhall冰川(AL) | 109 | 2017/6 | 1 | 0.59b (N/A) | N/A | -0.54 (N/A) | N/A | [ |
Lemon冰川(AL) | 9.53 | 2017/6 | 1 | 0.46b (N/A) | N/A | -0.86 (N/A) | N/A | [ |
Austerdalsbreen冰川(SC) | 20.9 | 2016/9 | 1 | 0.63b (N/A) | N/A | -0.34 (N/A) | N/A | [ |
Styggedalsbreen冰川(SC) | 2.06 | 2016/9 | 1 | -0.09b (N/A) | N/A | -0.31 (N/A) | N/A | [ |
Boverbreen冰川(SC) | 9.58 | 2016/9 | 1 | 0.53b (N/A) | N/A | -0.54 (N/A) | N/A | [ |
Nansenbreen冰川(SJ) | 38.1 | 2016/8 | 1 | -0.07b (N/A) | N/A | -0.66 (N/A) | N/A | [ |
Sefstrombreen冰川(SJ) | 133 | 2016/8 | 1 | 0.18b (N/A) | N/A | -0.27 (N/A) | N/A | [ |
Ebbabreen冰川(SJ) | 1.68 | 2016/8 | 1 | 0.16b (N/A) | N/A | -0.71 (N/A) | N/A | [ |
附表4
全球不同冰川区δD30Si和δA30Si的平均值(标准偏差)及变化范围(数据来源见附表2)"
地区 | δD30Si/‰ | 变化范围/‰ | δA30Si/‰ | 变化范围/‰ |
---|---|---|---|---|
格陵兰 | 0.036 (0.29) | -0.36~0.41 | -0.467 (0.16) | -0.67~0.467 |
冰岛 | 0.089 (0.56) | -0.58~0.78 | -0.150 (0.13) | -0.36~-0.05 |
斯瓦尔巴 | 0.090 (0.14) | -0.07~0.18 | -0.547 (0.24) | -0.71~-0.27 |
斯堪的纳维亚 | 0.357 (0.39) | -0.09~0.63 | -0.397 (0.13) | -0.54~-0.31 |
阿拉斯加 | 0.468 (0.11) | 0.33~0.59 | -0.673 (0.17) | -0.86~-0.54 |
全球(冰川) | 0.225 (0.42) | -0.58~0.78 | -0.400 (0.26) | -0.86~-0.05 |
全球(冰盖) | 0.036 (0.29) | -0.36~0.41 | -0.467 (0.16) | -0.67~-0.467 |
1 | Durkin C A, Bender S J, Chan K Y K, et al. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon[J]. Limnology and Oceanography, 2013, 58(5): 1707-1726. |
2 | Iler R K. The chemistry of silica: Solubility, polymerization, colloid and surface properties, and biochemistry[M]. New York: Wiley, 1979. |
3 | Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372. |
4 | Harrison K. Role of increased marine silica input on paleo-pCO2 levels[J]. Paleoceanography, 2000, 15: 292-298. |
5 | Tréguer P, Pondaven P. Global change. Silica control of carbon dioxide[J]. Nature, 2000, 406: 358-359. |
6 | Cermeno P, Falkowski P G, Romero O E, et al. Continental erosion and the Cenozoic rise of marine diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4239-4244. |
7 | Frings P J, Clymans W, Fontorbe G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36. |
8 | Hughes H J, Bouillon S, André L, et al. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed (Tana River, Kenya)[J]. Chemical Geology, 2012, 308/309: 18-25. |
9 | IPCC. Climate change 2014: Impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014. |
10 | Kang Shichang, Guo Wanqin, Zhong Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Advances in Climate Change Research, 2020, 16(2): 143-152. |
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. | |
11 | Jones I W, Munhoven G, Tranter M, et al. Modelled glacial and non-glacial HCO3 -, Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio[J]. Global and Planetary Change, 2002, 33(1/2): 139-153. |
12 | Beucher C P, Brzezinski M A, Crosta X. Silicic acid dynamics in the glacial sub-Antarctic: Implications for the silicic acid leakage hypothesis[J]. Global Biogeochemical Cycles, 2007, 21(3): GB3015. |
13 | Georg R B, Reynolds B C, West A J, et al. Silicon isotope variations accompanying basalt weathering in Iceland[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 476-490. |
14 | Vance D, Teagle D A, Foster G L. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets[J]. Nature, 2009, 458(7237): 493-496. |
15 | Opfergelt S, Burton K W, Pogge von Strandmann P A E, et al. Riverine silicon isotope variations in glaciated basaltic terrains: Implications for the Si delivery to the ocean over glacial-interglacial intervals[J]. Earth and Planetary Science Letters, 2013, 369-370: 211-219. |
16 | Wadham J L, De’ath R, Monteiro F M, et al. The potential role of the Antarctic Ice Sheet in global biogeochemical cycles[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2013, 104(1): 55-67. |
17 | Wadham J L, Hawkings J, Telling J, et al. Sources, cycling and export of nitrogen on the Greenland Ice Sheet[J]. Biogeosciences, 2016, 13(22): 6339-6352. |
18 | Hawkings J, Wadham J, Tranter M, et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic[J]. Global Biogeochemical Cycles, 2016, 30(2): 191-210. |
19 | Hawkings J R, Wadham J L, Benning L G, et al. Ice sheets as a missing source of silica to the polar oceans[J]. Nature Communications, 2017, 8: 14198. |
20 | Li X, Ding Y, Xu J, et al. Importance of mountain glaciers as a source of dissolved organic carbon[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2123-2134. |
21 | Li X, Ding Y, Hood E, et al. Dissolved iron supply from asian glaciers: local controls and a regional perspective[J]. Global Biogeochemical Cycles, 2019, 33(10): 1223-1237. |
22 | Berner R A. Weathering, plants, and the long-term carbon cycle[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3225-3231. |
23 | Hawkings J R, Wadham J L, Tranter M, et al. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet[J]. Geochemical Perspectives Letters, 2015, 1: 94-104. |
24 | Gulick S P, Jaeger J M, Mix A C, et al. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): 15042-15047. |
25 | Aciego S M, Stevenson E I, Arendt C A. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland[J]. Earth and Planetary Science Letters, 2015, 424: 51-58. |
26 | Eiriksdottir E S, Gislason S R, Oelkers E H. Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans[J]. Geochimica et Cosmochimica Acta, 2015, 166: 249-266. |
27 | Arrigo K R, van Dijken G L, Castelao R M, et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters[J]. Geophysical Research Letters, 2017, 44(12): 6278-6285. |
28 | Calbet A, Riisgaard K, Saiz E, et al. Phytoplankton growth and microzooplankton grazing along a sub-Arctic fjord (Godthåbsfjord, west Greenland)[J]. Marine Ecology Progress Series, 2011, 442: 11-22. |
29 | Jensen H M, Pedersen L, Burmeister A, et al. Pelagic primary production during summer along 65° to 72° N off West Greenland[J]. Polar Biology, 1999, 21(5): 269-278. |
30 | Cowton T, Nienow P, Bartholomew I, et al. Rapid erosion beneath the Greenland ice sheet[J]. Geology, 2012, 40(4): 343-346. |
31 | Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: a reestimate[J]. Science, 1995, 268(5209): 375-379. |
32 | Prestrud Anderson S, Drever J I, Humphrey N F. Chemical weathering in glacial environments[J]. Geology, 1997, 25(5): 399-402. |
33 | Hodson A, Porter P, Lowe A, et al. Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier, Pakistan[J]. Journal of Hydrology, 2002, 262(1): 193-208. |
34 | West A, Galy A, Bickle M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 211-228. |
35 | Chandler D M, Wadham J L, Lis G P, et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers[J]. Nature Geoscience, 2013, 6(3): 195-198. |
36 | Graly J A, Humphrey N F, Landowski C M, et al. Chemical weathering under the Greenland Ice Sheet[J]. Geology, 2014, 42(6): 551-554. |
37 | Yde J C, Knudsen N T, Hasholt B, et al. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland[J]. Journal of Hydrology, 2014, 519: 2165-2179. |
38 | Crompton J W, Flowers G E, Kirste D, et al. Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling[J]. Journal of Glaciology, 2017, 61(230): 1061-1078. |
39 | Michaud A B, Skidmore M L, Mitchell A C, et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica[J]. Geology, 2016, 44(5): 347-350. |
40 | Hatton J E, Hendry K R, Hawkings J R, et al. Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle[J]. Nature Communications, 2019, 475(2228): 20190098. |
41 | Hughes H J, Delvigne C, Korntheuer M, et al. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1892-1896. |
42 | Horn M G, Beucher C P, Robinson R S, et al. Southern ocean nitrogen and silicon dynamics during the last deglaciation[J]. Earth and Planetary Science Letters, 2011, 310(3-4): 334-339. |
43 | Hendry K R, Robinson L F, McManus J F, et al. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation[J]. Nature Communications, 2014, 5: 3107. |
44 | Hawkings J R, Hatton J E, Hendry K R, et al. The silicon cycle impacted by past ice sheets[J]. Nature Communications, 2018, 9(1): 3210. |
45 | Hatton J E, Hendry K R, Hawkings J R, et al. Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 247: 191-206. |
46 | Meire L, Meire P, Struyf E, et al. High export of dissolved silica from the Greenland Ice Sheet[J]. Geophysical Research Letters, 2016, 43(17): 9173-9182. |
47 | DeMaster D J. The supply and accumulation of silica in the marine environment[J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. |
48 | Bhatia M P. Hydrological and biogeochemical cycling along the Greenland Ice Sheet margin[D]. Boston: Massachusetts Institute of Technology, 2012. |
49 | Zhang F, Qaiser F U, Zeng C, et al. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River[J]. Environmental Science and Pollution Research International, 2019, 26(23): 23645-23660. |
50 | Yde J C, Tvis Knudsen N, Nielsen O B. Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuannersuit Kuussuat, Disko Island, West Greenland[J]. Journal of Hydrology, 2005, 300(1): 172-187. |
51 | Clymans W, Govers G, Van Wesemael B, et al. Amorphous silica analysis in terrestrial runoff samples[J]. Geoderma, 2011, 167: 228-235. |
52 | Follett E A C. Chemical dissolution techniques in the study of soil clays: Part II[J]. Clays and Clay Minerals, 1965, 6(1): 23-34. |
53 | Ding T P, Ma G R, Shui M X, et al. Silicon isotope study on rice plants from the Zhejiang Province, China[J]. Chemical Geology, 2005, 218(1/2): 41-50. |
54 | Chemtob S M, Rossman G R, Young E D, et al. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai’i[J]. Geochimica et Cosmochimica Acta, 2015, 169: 63-81. |
55 | Sutton J N, André L, Cardinal D, et al. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements[J]. Frontiers in Earth Science, 2018, 5(112): 2296-6463. |
56 | Georg R B, Reynolds B C, Frank M, et al. Mechanisms controlling the silicon isotopic compositions of river waters[J]. Earth and Planetary Science Letters, 2006, 249(3/4): 290-306. |
57 | Georg R B, Reynolds B C, Frank M, et al. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS[J]. Chemical Geology, 2006, 235(1/2): 95-104. |
58 | Opfergelt S, Eiriksdottir E S, Burton K W, et al. Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 73-82. |
59 | Pokrovsky O S, Reynolds B C, Prokushkin A S, et al. Silicon isotope variations in Central Siberian rivers during basalt weathering in permafrost-dominated larch forests[J]. Chemical Geology, 2013, 355: 103-116. |
60 | Hopwood M J, Connelly D P, Arendt K E, et al. Seasonal Changes in Fe along a Glaciated Greenlandic Fjord[J]. Frontiers in Earth Science, 2016, 4(1): 15. |
61 | Azetsu-Scott K, Syvitski J P M. Influence of melting icebergs on distribution, characteristics and transport of marine particles in an East Greenland fjord[J]. Journal of Geophysical Research: Oceans, 1999, 104(C3): 5321-5328. |
62 | Bamber J, van den Broeke M, Ettema J, et al. Recent large increases in freshwater fluxes from Greenland into the North Atlantic[J]. Geophysical Research Letters, 2012, 39(19): 1-4. |
63 | Pogge von Strandmann P A E, Opfergelt S, Lai Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339: 11-23. |
64 | Knudson K P, Hendy I L. Climatic influences on sediment deposition and turbidite frequency in the Nitinat Fan, British Columbia[J]. Marine Geology, 2009, 262(1): 29-38. |
65 | Jaeger J M, Koppes M N. The role of the cryosphere in source-to-sink systems[J]. Earth-Science Reviews, 2016, 153: 43-76. |
66 | Hawkings J R, Benning L G, Raiswell R, et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments[J]. Earth and Planetary Science Letters, 2018, 493: 92-101. |
67 | Holmes R M, McClelland J W, Peterson B J, et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic ocean and surrounding seas[J]. Estuaries and Coasts, 2011, 35(2): 369-382. |
68 | Hodson A J, Mumford P N, Kohler J, et al. The High Arctic glacial ecosystem: new insights from nutrient budgets[J]. Biogeochemistry, 2005, 72(2): 233-256. |
69 | Henderson J H, Syers J K, Jackson M L. Quartz dissolution as influenced by pH and the presence of a disturbed surface layer[J]. Israel Journal of Chemistry, 1970, 8(3): 357-372. |
70 | Lin I J, Somasundaran P. Alterations in properties of samples during their preparation by grinding[J]. Powder Technology, 1972, 6(3): 171-179. |
71 | Casey W H, Westrich H R, Banfield J F, et al. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals[J]. Nature, 1993, 366(6452): 253-256. |
72 | Hellmann R, Wirth R, Daval D, et al. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces[J]. Chemical Geology, 2012, 294-295: 203-216. |
73 | Gibson C E, Wang G, Foy R H. Silica and diatom growth in Lough Neagh: the importance of internal recycling[J]. Freshwater Biology, 2000, 45(3): 285-293. |
74 | Wehrmann L M, Formolo M J, Owens J D, et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism[J]. Geochimica et Cosmochimica Acta, 2014, 141: 628-655. |
75 | Socratis L, Cappelle P V, Behrends T. Dissolution of biogenic silica from land to ocean: Role of salinity and pH[J]. Limnology and Oceanography, 2008, 53(4): 1614-1621. |
76 | Telling J, Boyd E S, Bone N, et al. Rock comminution as a source of hydrogen for subglacial ecosystems[J]. Nature Geoscience, 2015, 8(11): 851-855. |
77 | Dove P M, Han N, Wallace A F, et al. Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9903-9908. |
78 | Pant R R, Zhang F, Rehman F U, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal[J]. Canadian Journal of Earth Sciences, 2018, 622/623: 770-782. |
79 | Chen Zhiqiang, Liu Jiping, Fan Guangzhou, et al. Comparison of 2013 and 2012 Greenland Ice Sheet surface melt and associated mechanisms[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 757-766. |
陈志强, 刘骥平, 范广洲, 等. 2013和2012年夏季格陵兰岛冰盖表面融化对比及可能的影响机理分析[J]. 大气科学, 2015, 39(4): 757-766. | |
80 | Ziegler K, Chadwick O A, Brzezinski M A, et al. Natural variations of δ 30Si ratios during progressive basalt weathering, Hawaiian Islands[J]. Geochimica et Cosmochimica Acta, 2005, 69(19): 4597-4610. |
81 | Delstanche S, Opfergelt S, Cardinal D, et al. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 923-934. |
82 | Oelze M, von Blanckenburg F, Hoellen D, et al. Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: implications for weathering systems[J]. Chemical Geology, 2014, 380: 161-171. |
83 | Savage P S, Georg R B, Armytage R M G, et al. Silicon isotope homogeneity in the mantle[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 139-146. |
84 | Savage P S, Georg R B, Williams H M, et al. Silicon isotopes in granulite xenoliths: insights into isotopic fractionation during igneous processes and the composition of the deep continental crust[J]. Earth and Planetary Science Letters, 2013, 365: 221-231. |
85 | Grasshoff K, Kremling K, Ehrhardt M. Methods of seawater analysis [M]. 3rd ed. New York: John Wiley, 2007. |
86 | Dürr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3): 597-620. |
87 | Schroth A W, Crusius J, Hoyer I, et al. Estuarine removal of glacial iron and implications for iron fluxes to the ocean[J]. Geophysical Research Letters, 2014, 41(11): 3951-3958. |
88 | Frings P J, Clymans W, Conley D J. Amorphous silica transport in the Ganges Basin: Implications for Si delivery to the oceans[J]. Procedia Earth and Planetary Science, 2014, 10: 271-274. |
89 | Graly J A, Drever J I, Humphrey N F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems[J]. Global Biogeochemical Cycles, 2017, 31(4): 709-727. |
[1] | 孙美平, 张磊, 姚晓军, 彭莉斌, 张浩, 牛舒婷. 1954—2016年疏勒河上游径流变化特征及影响因素[J]. 冰川冻土, 2022, 44(2): 657-666. |
[2] | 骆建伟, 柯长青, 喻薛凝. 2000—2020年兴都库什东部冰川区物质平衡变化及其影响因素[J]. 冰川冻土, 2022, 44(1): 159-170. |
[3] | 杨婧睿,蒋宗立,刘时银,王欣,张勇,张震,魏俊锋. 东喀喇昆仑山昆常冰川近期跃动特征[J]. 冰川冻土, 2021, 43(6): 1732-1745. |
[4] | 武小波,李全莲,贺建桥. 黄河源区阿尼玛卿山耶和龙冰川积雪中不溶微粒组成特征及环境意义[J]. 冰川冻土, 2021, 43(6): 1746-1754. |
[5] | 唐倩玉,张威,刘亮,柴乐,李亚鹏,张廉卿,孙波,张宏杰. 川西螺髻山清水沟倒数第二次冰期以来的冰川规模与古气候重建[J]. 冰川冻土, 2021, 43(6): 1869-1877. |
[6] | 谢宜达,王飞腾,黄仕海,赵灿文. 应用人工干预措施减缓冰川消融试验研究——以达古冰川为例[J]. 冰川冻土, 2021, 43(6): 1878-1887. |
[7] | 岳晓英,李忠勤,王飞腾,李宏亮,沈思民. 天山乌鲁木齐河源1号冰川消融期反照率特征[J]. 冰川冻土, 2021, 43(5): 1412-1423. |
[8] | 田洪阵,肖月,杨太保,刘沁萍,张开帆. 1973—2020年阿尔金山冰川面积变化及其对气温变化的响应[J]. 冰川冻土, 2021, 43(5): 1424-1434. |
[9] | 贺青山,杨建平,陈虹举,王彦霞,唐凡,冀钦,葛秋伶. 中国西部寒区流域冰川水文调节功能研究[J]. 冰川冻土, 2021, 43(5): 1512-1522. |
[10] | 唐凡,杨建平,贺青山,陈虹举,黄仕海,张伏,王彦霞,葛秋伶. 基于F-MCDM的冰川旅游游客满意度综合评价及敏感性分析[J]. 冰川冻土, 2021, 43(5): 1571-1581. |
[11] | 张齐民,闫世勇,吕明阳,张露,刘广. 高分三号山地冰川表面运动提取与分析[J]. 冰川冻土, 2021, 43(5): 1594-1605. |
[12] | 李志杰,王宁练,侯姗姗. 帕米尔中部North Kyzkurgan冰川跃动变化遥感监测[J]. 冰川冻土, 2021, 43(5): 1267-1276. |
[13] | 李宏亮, 王璞玉, 李忠勤, 王盼盼, 徐春海, 刘爽爽, 金爽, 张正勇, 徐丽萍. 基于多源数据的天山乌鲁木齐河源1号冰川变化研究[J]. 冰川冻土, 2021, 43(4): 1018-1026. |
[14] | 何天豪, 高红凯, 李向应, 韩添丁, 贺志华, 张志才, 段峥, 刘敏, 丁永建. 水稳定同位素示踪的冰川流域水文模拟及不确定性研究[J]. 冰川冻土, 2021, 43(4): 1130-1143. |
[15] | 赵华秋, 王欣, 赵轩茹, 郭万钦, 刘时银, 魏俊锋, 张勇. 2008—2018年中国冰川变化分析[J]. 冰川冻土, 2021, 43(4): 976-986. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000