1 |
Buzzini P, Turchetti B, Yurkov A. Extremophilic yeasts: the toughest yeasts around[J]. Yeast, 2018, 35(8): 487-497.
|
2 |
Zang Lin, Liu Yongqin, Liu Xiaobo. Advance in researches of virus in cryoconite on glacier surface[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1496-1504.
|
|
臧琳, 刘勇勤, 刘晓波. 冰川表面冰尘洞内病毒研究进展[J]. 冰川冻土, 2019, 41(6): 1496-1504.
|
3 |
Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools[J]. Applied Microbiology & Biotechnology, 2019, 103(7): 2857-2871.
|
4 |
Ibrar M, Ullah M W, Manan S, et al. Fungi from the extremes of life: an untapped treasure for bioactive compounds[J]. Applied Microbiology and Biotechnology, 2020, 104(7): 2777-2801.
|
5 |
Barahona S, Yuivar Y, Socias G, et al. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica[J]. Extremophiles Life Under Extreme Conditions, 2016, 20(4): 479-491.
|
6 |
Tao Ling, Gu Yanling, Zheng Xiaoji, et al. Cultivable bacteria isolated from the meltwater of the glacier No.1 at headwater of the Urumqi River in Tianshan Mountains physiological-biochemical character and phylogeny[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 511-521.
|
|
陶玲, 顾燕玲, 郑晓吉, 等. 天山乌鲁木齐河源1号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土, 2015, 37(2): 511-521.
|
7 |
Jia Yufeng, Li Zhongqin, Jin Shuang, et al. Changes of the runoff and its components in Urumqi Glacier No.1 catchment, Tianshan Mountains, 1959-2017[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1302-1312.
|
|
贾玉峰, 李忠勤, 金爽, 等. 1959-2017年天山乌鲁木齐河源1号冰川流域径流及其组分变化[J]. 冰川冻土, 2019, 41(6): 1302-1312.
|
8 |
Wang Feng, Wang Ninglian, Xu Baiqing, et al. Characteristics of the culturable bacteria in the surface and deep layers of the Tanggula Hariqin ice core, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 968-976.
|
|
王凤, 王宁练, 徐柏青, 等. 藏高原唐古拉哈日钦冰芯表层和深层可培养细菌特征[J]. 冰川冻土, 2019, 41(4): 968- 976.
|
9 |
Jiang Y, Lei Y, Qin W, et al. Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield[J]. Geoderma, 2019, 338(15): 313-324.
|
10 |
Garcia V D, Brizzio S, Broock M R V. Yeasts from glacial ice of Patagonian Andes, Argentina[J]. FEMS Microbiology Ecology, 2012, 82(2): 540-550.
|
11 |
Hotaling S, Hood E, Hamilton T L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections, and implications of a warming climate[J]. Environmental Microbiology, 2017, 19(8): 2935-2948.
|
12 |
Buzzini P, Margesin R. Cold-adapted yeasts[M]. Berlin: Springer, 2014.
|
13 |
Luo B, Sun H, Zhang Y, et al. Habitat-specificity and diversity of culturable cold-adapted yeasts of a cold-based glacier in the Tianshan Mountains, northwestern China[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 2311-2327.
|
14 |
Wang Xuxian, Gu Yanling, Ni Xuejiao, et al. Composition and phylogeny of fungal community in supraglacial cryoconite and subglacial sedments of the Glacier No.1 at headwaters of the Urumqi River in Tianshan Mountains[J] .Journal of Glaciology and Geocryology, 2017, 39(4): 781-791.
|
|
王叙贤, 顾燕玲, 倪雪娇, 等. 天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析[J]. 冰川冻土, 2017, 39(4): 781-791.
|
15 |
Zhang Ruirui, Xue Mei, Li Ningning, et al. Phylogeny and diversity of culturable yeasts in supraglacial cryoconite and subglacial sedments of the Glacier No.1 in Tianshan Mountains[J] .Acta Microbiologica Sinica, 2019, 59(2): 334-348.
|
|
张瑞蕊, 薛梅, 李宁宁, 等. 天山一号冰川表面冰尘和底部沉积层中可培养酵母菌系统发育类群的分布及生态生理特征[J]. 微生物学报, 2019, 59(2): 334-348.
|
16 |
Bergamo R F, Novo M T M, Veriissimo R V, et al. Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis[J]. Research in Microbiology, 2004, 155(7): 559-567.
|
17 |
Correia A, Sampaio P, Almeida J, et al. Study of molecular epidemiology of candidiasis in Portugal by PCR fingerprinting of Candida clinical isolates[J]. Journal of clinical microbiology, 2004, 42(12): 5899-5903.
|
18 |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
|
19 |
Wang C, Liu D, BAI E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology & Biochemistry, 2018, 120:126-133.
|
20 |
Duarte A W F, Dayo-owoyemi I, Nobre F S, et al. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples[J]. Extremophiles, 2013, 17(6): 1023-1035.
|
21 |
Turchetti B, Buzzini P, Goretti M, et al. Psychrophilic yeasts in glacial environments of Alpine glaciers[J]. FEMS Microbiology Ecology, 2010, 63(1): 73-83.
|
22 |
Ferreira E M S, de Sousa F M P, Rosa L H, et al. Taxonomy and richness of yeasts associated with angiosperms, bryophytes, and meltwater biofilms collected in the Antarctic Peninsula[J]. Extremophiles, 2019, 23(1): 151-159.
|
23 |
Jun U, Yoshitaka Y, Naoko N, et al. Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska)[J]. FEMS Microbiology Ecology, 2012, 82(2): 279-286.
|
24 |
Troncoso E, Barahona S, Carrasco M, et al. Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula[J]. Polar Biology, 2016, 40(3): 1-10.
|
25 |
Stibal M, Tranter M, Benning L G, et al. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input[J]. Environmental Microbiology, 2008, 10(8): 2172-2178.
|
26 |
Mannazzu I, Landolfo S, Da Silva T L, et al. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest[J]. World Journal of Microbiology and Biotechnology, 2015, 31(11): 1665-1673.
|
27 |
Margesin R, Fonteyne P A, Schinner F, et al. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments[J]. International Journal Systematic and Evolutional Microbiol, 2007, 57(9): 2179-2184.
|
28 |
Kurtzman C P, Fell J W. The yeasts: a taxonomic study[J]. Kluwer Academic Publishers, 2013, 19(1): 275-276.
|
29 |
Anesio A M, Lutz S, Chrismas N A M, et al. The microbiome of glaciers and ice sheets[J]. Npj Biofilms and Microbiomes, 2017, 3(1): 1-11.
|
30 |
Nemergut D R, Schmidt S K, Fukami T, et al. Patterns and processes of microbial community assembly[J]. Microbiology and Molecular Biology Reviews, 2013, 77(3): 342-356.
|
31 |
Segawa T, Miyamoto K, Ushida K, et al. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71(1): 123-130.
|
32 |
Ciccazzo S, Esposito A, Borruso L, et al. Microbial communities and primary succession in high altitude mountain environments[J]. Annals of Microbiology, 2016, 66(1): 43-60.
|
33 |
Abu-ghosh S, Droby S, Korine C. Seasonal and plant-dependent variations in diversity, abundance and stress tolerance of epiphytic yeasts in desert habitats[J]. Environmental Microbiology Reports, 2014, 6(4): 373-382.
|
34 |
Yurkov A, Inácio J O, Chernov I Y, et al. Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from Birch Forests in Russia[J]. Current Microbiology, 2015, 70(4): 587-601.
|
35 |
Ma L, Rogers S O, Catranis C M, et al. Detection and characterization of ancient fungi entrapped in glacial ice[J]. Mycologia, 2000, 92(2): 286-295.
|
36 |
Buzzini P, Branda E, Goretti M, et al. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential[J]. FEMS Microbiol Ecol, 2012, 82(2): 217-241.
|
37 |
Anesio A M, Hodson A J, Fritz A, et al. High microbial activity on glaciers: importance to the global carbon cycle[J]. Global Change Biology, 2009, 15(4): 955-960.
|
38 |
Branda E, Turchetti B, Diolaiuti G, et al. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy)[J]. Fems Microbiology Ecology, 2010, 72(3): 354-369.
|
39 |
Johnson Z I, Zinser E R, Coe A, et al. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients[J]. Science, 2006, 311(5768): 1737-1740.
|