冰川冻土 ›› 2021, Vol. 43 ›› Issue (2): 342-356.doi: 10.7522/j.issn.1000-0240.2021.0146
邹小伟1(), 孙维君1(
), 杨堤益2, 王英珊1, 李延召3, 晋子振3, 杜文涛3, 秦翔3
收稿日期:
2020-12-09
修回日期:
2021-03-08
出版日期:
2021-04-30
发布日期:
2022-04-27
通讯作者:
孙维君
E-mail:xiaoweizou14@163.com;sun1982wj@163.com
作者简介:
邹小伟,硕士研究生,主要从事极地冰-气相互作用研究. E-mail: xiaoweizou14@163.com
基金资助:
Xiaowei ZOU1(), Weijun SUN1(
), Diyi YANG2, Yingshan WANG1, Yanzhao LI3, Zizhen JIN3, Wentao DU3, Xiang QIN3
Received:
2020-12-09
Revised:
2021-03-08
Online:
2021-04-30
Published:
2022-04-27
Contact:
Weijun SUN
E-mail:xiaoweizou14@163.com;sun1982wj@163.com
摘要:
为探讨云量对冰川表面能量平衡(SEB)的影响,利用架设在老虎沟12号冰川(简称12号冰川)消融区(4 550 m a.s.l.)的自动气象站资料,结合能量平衡模型计算各能量分量并分析其季节变化,通过云量参数化方案获取云量因子并量化其对冰川表面能量收支的影响。结果表明:净短波辐射为冰川表面主要的能量来源(92%),净长波辐射为主要能量支出(61%),二者均受云量影响,但云的短波辐射效应更强(-37 W?m-2)。云量通过影响辐射收支和湍流通量进而影响冰川表面能量收支,随云量的增加,冰川表面获得的能量减少,冰川消融速率降低。与其他区域的冰川表面能量收支对比,除地理位置、反照率、气温等因素外,海拔和云量的影响也非常显著。
中图分类号:
邹小伟, 孙维君, 杨堤益, 王英珊, 李延召, 晋子振, 杜文涛, 秦翔. 云量对祁连山老虎沟12号冰川表面能量平衡的影响[J]. 冰川冻土, 2021, 43(2): 342-356.
Xiaowei ZOU, Weijun SUN, Diyi YANG, Yingshan WANG, Yanzhao LI, Zizhen JIN, Wentao DU, Xiang QIN. Effect of cloud on surface energy balance of Laohugou Glacier No. 12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 342-356.
表1
AWS传感器各项参数"
气象要素 | 传感器型号 | 测量范围 | 精度 | 架设高度 |
---|---|---|---|---|
气温 | Vaisala41382 | -40~60 ℃ | ±0.2 ℃ | 1.5 m, 3.5 m |
相对湿度 | Vaisala41382 | 0~100% | ±2% | 1.5 m, 3.5 m |
气压 | PTB210 | 50~1 300 hPa | ±0.5 hPa | 1.5 m, 3.5 m |
风速 | Young05103 | 0~60 m⋅s-1 | ±0.3 m⋅s-1 | 1.5 m, 3.5 m |
风向 | Young05103 | 0~360° | ±3° | 1.5 m, 3.5 m |
降水量 | T200B | 0~600 mm | ±0.1 mm | 1.7 m |
短波辐射 | Kipp & Zonen | 0.305~2.8 μm | ±10%日总量 | 1.5 m |
长波辐射 | Kipp & Zonen | 5~50 μm | ±10%日总量 | 1.5 m |
表2
2011年12号冰川晴天和阴天条件能量组分(W?m-2)及物质平衡(mm w.e.)"
月份 | 晴天 | 阴天 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | L | H | LE | Qm | MB | S | L | H | LE | Qm | MB | |
平均 | 119 | -78 | 9 | -9 | -42 | -8.4 | 43 | -22 | 3 | -5 | -20 | -2.3 |
1月 | 42 | -75 | 17 | -3 | 0 | 0 | 12 | -20 | 4 | -5 | 0 | 0.5 |
2月 | 54 | -72 | 13 | -5 | 0 | 0.3 | 23 | -41 | 11 | -6 | 0 | 0.1 |
3月 | 87 | -80 | 5 | -12 | 0 | 0 | 29 | -20 | 0 | -6 | 0 | 1.0 |
4月 | 91 | -83 | 8 | -15 | 0 | 0 | 29 | -22 | -1 | -6 | 0 | 0 |
5月 | 124 | -75 | 4 | -21 | 0 | 0 | 54 | -30 | 2 | -11 | 0 | 2.7 |
6月 | 152 | -83 | 10 | -9 | -70 | -25.9 | 56 | -10 | 2 | -2 | -45 | -2.5 |
7月 | 308 | -75 | 6 | -4 | -236 | -44.7 | 80 | -16 | 2 | -2 | -64 | -13.7 |
8月 | 248 | -81 | 5 | -7 | -165 | -28.9 | 91 | -14 | 3 | -1 | -79 | -14.7 |
9月 | 113 | -80 | 7 | -13 | -29 | -1.3 | 57 | -25 | 2 | -4 | -31 | -3.0 |
10月 | 116 | -89 | 5 | -10 | -0 | 0 | 29 | -30 | 3 | -5 | 0 | 2.6 |
11月 | 50 | -72 | 16 | -4 | -0 | 0 | 10 | -17 | 3 | -6 | 0 | 1.9 |
12月 | 48 | -70 | 13 | -2 | -0 | 0.1 | - | - | - | - | - | - |
表4
全球不同类型冰川/盖表面能量平衡对比"
冰川、冰盖名称 | 海拔/m a.s.l. | S/(W⋅m-2) | L/(W⋅m-2) | H/(W⋅m-2) | LE/(W⋅m-2) | G/(W⋅m-2) | Qm/(W⋅m-2) |
---|---|---|---|---|---|---|---|
Laohugou No.12 | 4 550 | 82(92%) | -54(61%) | 7(8%) | -7(8%) | 0 | -27(31%) |
Storbreen | 1 570 | 38(67%) | -20(35%) | 15(26%) | 1(2%) | 3(5%) | -37(65%) |
Midtdalsbreen | 1 450 | 50(61%) | -25(31%) | 24(30%) | 4(5%) | 3(4%) | -56(69%) |
S5 | 490 | 45(53%) | -39(46%) | 38(45%) | -4(5%) | 2(2%) | -41(49%) |
S6 | 1 020 | 36(55%) | -42(66%) | 26(40%) | -2(3%) | 3(5%) | -20(31%) |
Zhadang | 5 665 | 73(83%) | -56(69%) | 13(15%) | -11(14%) | 2(2%) | -14(17%) |
Parlung No.4 | 4 800 | 78(81%) | -49(55%) | 16(17%) | -10(11%) | 2(2%) | -30(34%) |
PANDA-N | 2 579 | 20(40%) | -49(98%) | 26(52%) | -1(2%) | 4(8%) | 0 |
Panda-1 | 2 737 | 29(67%) | -39(87%) | 12(30%) | 2(5%) | -5(11%) | 0 |
1 | Conway J P, Cullen N J. Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand[J]. The Cryosphere, 2016, 10(1): 975-1019. |
2 | Yang Wei, Guo Xiaofeng, Yao Tandong, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D14116. |
3 | Yao, Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. |
4 | Zhu Meilin, Yao Tandong, Yang Wei, et al. Energy-and mass-balance comparison between Zhadang and Parlung No.4 glaciers on the Tibetan Plateau[J]. Journal of Glaciology, 2015, 61(227): 595-607. |
5 | Sun Weijun, Qin Xiang, Wang Yetang, et al. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China[J]. Climate Dynamics, 2018, 50(9/10): 3557-3570. |
6 | Arnold N S, Rees W G, Hodson A J, et al. Topographic controls on the surface energy balance of a high arctic valley glacier[J]. Journal of Geophysical Research Earth Surface, 2006, 111: F02011. |
7 | Karner F, Obleitner F, Krismer T, et al. A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 3986-4000. |
8 | Hock R. 2005 Glacier melt: a review of processes and their modelling[J]. Progress in Physical Geography, 29(3): 362-391. |
9 | Hofer S, Tedstone A J, Fettweis X, et al. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet[J]. Science Advances, 2017, 3(6): 1700584. |
10 | Zhang Jiajia, Sun Weijun, Du Wentao, et al. Characteristics of energy budget under different weather conditions in the ablation area of the Laohugou Glacier No.12 in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 332-343. |
张佳佳, 孙维君, 杜文涛, 等. 祁连山老虎沟12号冰川消融区不同天气条件下能量收支特征[J]. 冰川冻土, 2020, 42(2): 332-343. | |
11 | Van den Broeke M, Reijmer C, As D V, et al. Daily cycle of the surface energy balance in Antarctica and the influence of clouds[J]. International Journal of Climatology, 2006, 26(12): 1587-1605. |
12 | Giesen R H, Van den Broeke M, Oerlemans J, et al. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D21111. |
13 | Walsh J E, Chapman W L. Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses[J]. Journal of Climate, 1998, 11(11): 3030-3045. |
14 | Sicart J E, Hock R, Ribstein P, et al. Sky longwave radiation on tropical Andean glaciers: parameterization and sensitivity to atmospheric variables[J]. Journal of Glaciology, 2010, 56(199): 854-860. |
15 | Yamanouchi T. Arctic warming by cloud radiation enhanced by moist air intrusion observed at Ny-Ålesund, Svalbard[J]. Polar Science, 2019, 21: 110-116. |
16 | Chen Jizu, Qin Xiang, Kang Shichang, et al. Effects of clouds on surface melting of Laohugou Glacier No.12, western Qilian Mountains, China[J]. Journal of Glaciology, 2018, 64(243): 89-99. |
17 | Van Tricht K, Lhermitte S, Lenaerts J T, et al. Clouds enhance Greenland ice sheet meltwater runoff[J]. Nature Communications, 2016, 7(1): 1-9. |
18 | Gillett S, Cullen N J. Atmospheric controls on summer ablation over Brewster Glacier, New Zealand[J]. International Journal of Climatology, 2011, 31(13): 2033-2048. |
19 | Liu Yushuo, Qin Xiang, Chen Jizu, et al. Variations of Laohugou Glacier No.12 in the western Qilian Mountains, China, from 1957 to 2015[J]. Journal of Mountain Science, 2018, 15(1): 25-32. |
20 | Wang Yuzhe, Ren Jiawen, Qin Xiang, et al. Ice depth and glacier-bed characteristics of the Laohugou Glacier No.12, Qilian Mountains, revealed by ground-penetrating radar[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 28-35. |
王玉哲, 任贾文, 秦翔, 等. 祁连山老虎沟12号冰川雷达测厚和冰下地形特征研究[J]. 冰川冻土, 2016, 38(1): 28-35. | |
21 | Zhu Rong, Chen Jizu, Sun Weijun, et al. Ice temperature changing with elevations of a polythermal valley glacier in the northern Tibetan Plateau: a case study on the Laohugou Glacier No.12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1292-1301. |
朱荣, 陈记祖, 孙维君, 等. 青藏高原北部多温型山谷冰川不同海拔处冰温变化研究——以祁连山老虎沟12号冰川为例[J]. 冰川冻土, 2019, 41(6): 1292-1301. | |
22 | Liu Yushuo, Qin Xiang, Guo Wanqin, et al. Influence of the use of photogrammetric measurement precision on low-altitude micro-UAVs in the glacier region[J]. Journal of Remote Sensing, 2020, 24(2): 58-69. |
刘宇硕, 秦翔, 郭万钦, 等. 控制点布设对冰川区无人机摄影测量精度的影响[J]. 遥感学报, 2020, 24(2): 58-69. | |
23 | Zhang Xiaobo Zhao Xuesheng, Ge Daqing, et al. Monitoring displacement of Laohugou Glacier No.12 based on Landsat 8 and TerraSAR-X images[J]. Journal of Remote Sensing, 2018, 22(1): 157-164. |
张晓博, 赵学胜, 葛大庆, 等. 利用Landsat8和TerraSAR-X影像研究老虎沟12号冰川运动特征[J]. 遥感学报, 2018, 22(1): 157-164. | |
24 | Sun Weijun. Modelling of surface energy-mass balance on the Laohugou Glacier No.12 in the Qilian Mountains, China[D]. Beijing: University of Chinese Academy of Sciences, 2012. |
孙维君. 祁连山老虎沟12号冰川能量-物质平衡模拟研究[D]. 北京: 中国科学院大学, 2012. | |
25 | Østby T, Schuler T, Hagen J, et al. Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08[J]. Annals of Glaciology, 2013, 54(63): 229-240. |
26 | Oerlemans J, Giesen R H, Van den Broeke M. Retreating alpine glaciers: Increased melt rates due to accumulation of dust Vadret da Morteratsch, Switzerland[J]. Journal of Glaciology, 2009, 55 (192): 729-736. |
27 | Favier V, Wagnon P, Chazarin J P, et al. One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes[J]. Journal of Geophysical Research Atmospheres, 2004, 109(18). |
28 | Liston G E, Elder K. A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet)[J]. Journal of Hydrometeorology, 2006, 7(2): 217-234. |
29 | Sicart J E. Contribution à l'étude des flux d’energie, du bilan de masse et du debit de fonte d'un glacier tropical: Le Zongo, Bolivie[D]. Paris: University Paris VI, 2002. |
30 | Kumar L, Skidmore A K, Knowles E. Modelling topographic variation in solar radiation in a GIS environment[J]. International Journal of Geographical Information Science, 1997, 11(5): 475-497. |
31 | Duncan C H, Willson R C, Kendall J M, et al. Latest rocket measurements of the solar constant[J]. Solar Energy, 1982, 28(5): 385-387. |
32 | Van den Broeke M, Reijmer C, Van As D, et al. Seasonal cycles of Antarctic surface energy balance from automatic weather stations[J]. Annals of Glaciology, 2005, 41: 131-139. |
33 | Ding Minghu, Yang Diyi, Van den Broeke M, et al. The surface energy balance at panda 1 station, princess Elizabeth land: a typical katabatic wind region in east Antarctica[J]. Journal of Geophysical Research: Atmospheres, 125(3): 2019030378. |
34 | Holtslag A A M, De Bruin H A R. Applied modeling of the nighttime surface energy balance over land[J]. Journal of Applied Meteorology, 1988, 27(6): 689-704. |
35 | Dyer A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorology, 1974, 7(3): 363-372. |
36 | Andreas E L. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice[J]. Boundary-Layer Meteorology, 1987, 38(1): 159-184. |
37 | Van den Broeke M, Reijmer C H, Van d W R S W. A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations[J]. Journal of Glaciology, 2004, 50(171): 565-582. |
38 | Sun Weijun, Qin Xiang, Ren Jaiwen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountain during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46. |
孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46. | |
39 | Huai Baojuan. A study of observation and surface energy-mass balance model of Shiyi Glacier at Heihe River basin, Qilian Mountains, during the summer period[D]. Beijing: University of Chinese Academy of Sciences, 2016. |
怀保娟. 黑河流域十一冰川暖季能量-物质平衡观测与模拟研究[D]. 北京: 中国科学院大学, 2016. | |
40 | Jiang Xi, Wang Ninglian, He Jianqiao, et al. A distribute surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(18): 1757-1765. |
蒋熹, 王宁练, 贺建桥, 等. 山地冰川表面分布式能量-物质平衡模型及其应用[J]. 科学通报, 2010, 55(18): 1757-1765. | |
41 | Wang Sheng, Pu Jianchen, Wang Ninglian. Study of mass balance and sensibility to climate change of Qiyi Glacier in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1214-1221. |
王盛, 蒲健辰, 王宁练. 祁连山七一冰川物质平衡及其对气候变化的敏感性研究[J]. 冰川冻土, 2011, 33(6): 1214-1221. | |
42 | Nash J E, Sutcliffe J V. River flow forecasting through conceptual models’ Part I-A discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290. |
43 | Li Jian, Qin Xiang, Sun Weijun, et al. Analysis in micrometeorological characteristic in the surface layer of Laohugou Glacier No.12 in Qilian Mountains[J]. Plateau Meteorology, 2012, 31(2): 370-379. |
李健, 秦翔, 孙维君, 等. 祁连山老虎沟12号冰川近地层微气象特征分析[J]. 高原气象, 2012, 31(2): 370-379. | |
44 | Sedlar J, Tjernström M, Mauritsen T, et al. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing[J]. Climate Dynamics, 2011, 37(7/8): 1643-1660. |
45 | Zhang Yulan, Kang Shichang. Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings[J]. Chinese Science Bulletin, 2017, 62(35): 4151-4162. |
张玉兰, 康世昌. 青藏高原及周边地区冰川中吸光性杂质及其影响研究进展[J]. 科学通报, 2017, 62(35): 4151-4162. | |
46 | Zhang Yulan, Kang Shichang, Li Chaoliu, et al. Characteristics of black carbon in snow from Laohugou No.12 Glacier on the northern Tibetan Plateau[J]. Science of the Total Environment, 2017, 607: 1237-1249. |
47 | Conway J P, Cullen N J, Spronken-Smith R A, et al. All-sky radiation over a glacier surface in the Southern Alps of New Zealand: characterizing cloud effects on incoming shortwave, longwave and net radiation[J]. International Journal of Climatology, 2015, 35(5): 699-713. |
48 | Kuipers Munneke P, Reijmer C H, Van den Broeke M. Assessing the retrieval of cloud properties from radiation measurements over snow and ice[J]. International Journal of Climatology, 2011, 31(5): 756-769. |
49 | Van den Broeke M, As D V, Reijmer C, et al. Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations[J]. International Journal of Climatology, 2005, 25(8): 1081-1101. |
50 | Holmgren B. Climate and energy exchange on a sub-polar ice cap in summer. Part F. On the energy exchange of the snow surface at ice cap station[R]. Arctic Inst of North America Washington DC, 1971. |
51 | Jiang Xi. Progress in the research of snow and ice albedo[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 728-738. |
蒋熹. 冰雪反照率研究进展[J]. 冰川冻土, 2006, 28(5): 728-738. | |
52 | Jiskoot H, Mueller M S. Glacier fragmentation effects on surface energy balance and runoff: field measurements and distributed modelling[J]. Hydrological Processes, 2012, 26(12): 1861-1875. |
53 | Mölg T, Maussion F, Yang W, Scherer D. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier[J]. The Cryosphere, 2012, 6(6): 1445-1461. |
54 | Giesen R H, Andreassen L M, Van den Broeke M R, et al. Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway[J]. The Cryosphere, 2009, 3: 57-74. |
55 | Van den Broeke M R, Smeets C J P P, Van de Wal R S W. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet[J]. The Cryosphere, 2011, 5: 377-390. |
56 | Ding Minghu, Anubha Agrawal, Petra Heil, et al. Surface energy balance on the antarctic plateau as measured with an automatic weather station during 2014[J]. Advances in Polar Science, 2019, 30(2): 93-105. |
[1] | 杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平. 祁连山中东部青海云杉径向生长对气候变暖的响应差异[J]. 冰川冻土, 2022, 44(1): 14-23. |
[2] | 薛健, 李宗省, 冯起, 缪驰远, 邓晓红, 狄振华, 叶爱中, 龚伟, 张百娟, 桂娟, 高文德. 1980—2017年祁连山水源涵养量时空变化特征[J]. 冰川冻土, 2022, 44(1): 1-13. |
[3] | 杜冉, 彭小清, 金浩东, 魏庆, 孙文, 贾诗超, 范成彦, 王昆, 魏思浩, 赵耀华, FRAUENFELD Oliver W.. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188-202. |
[4] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[5] | 蒋雨芹,文军,吕少宁,王作亮,刘闻慧,武月月,邓浩. 地基微波遥感评估黄河源区草原下垫面土壤冻融过程研究[J]. 冰川冻土, 2021, 43(6): 1718-1731. |
[6] | 谢宜达,王飞腾,黄仕海,赵灿文. 应用人工干预措施减缓冰川消融试验研究——以达古冰川为例[J]. 冰川冻土, 2021, 43(6): 1878-1887. |
[7] | 张明礼, 王斌, 王得楷, 叶伟林, 郭宗云, 高樯, 岳国栋. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101. |
[8] | 潘保田,曹泊,管伟瑾. 2010—2020年祁连山东段冷龙岭宁缠河1号冰川变化综合观测研究[J]. 冰川冻土, 2021, 43(3): 864-873. |
[9] | 冯琳,徐建中,翟立翔. 青藏高原典型大陆性冰川表面消融期溶解性有机质演化特征分析[J]. 冰川冻土, 2021, 43(3): 874-884. |
[10] | 吕荣芳,赵文鹏,田晓磊,张建明. 祁连山地区生态系统服务间权衡的社会-生态环境响应机制研究[J]. 冰川冻土, 2021, 43(3): 928-938. |
[11] | 马翔宇, 李传金. 三极地区雪冰中黑碳研究进展[J]. 冰川冻土, 2021, 43(1): 92-106. |
[12] | 张太刚, 高坛光, 刁文钦, 张玉兰. 祁连山区雪冰反照率变化及其对冰川物质平衡的影响[J]. 冰川冻土, 2021, 43(1): 145-157. |
[13] | 彭晨阳, 盛煜, 吴吉春, 曹伟, 何彬彬. 祁连山区多年冻土空间分布模拟[J]. 冰川冻土, 2021, 43(1): 158-169. |
[14] | 张佳佳, 孙维君, 杜文涛, 陈记祖, 秦翔. 祁连山老虎沟12号冰川消融区不同天气条件下的能量收支特征[J]. 冰川冻土, 2020, 42(2): 332-343. |
[15] | 汪赢政, 李佳, 吴立新, 郭磊, 李建江. 1987 - 2018年祁连山冰川变化遥感监测及影响因子分析[J]. 冰川冻土, 2020, 42(2): 344-356. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000