1 |
Schweizer J, Bruce Jamieson J, Schneebeli M. Snow avalanche formation[J]. Reviews of Geophysics, 2003, 41(4): 1-25.
|
2 |
Podolskiy E A, Izumi K, Suchkov V E, et al. Physical and societal statistics for a century of snow-avalanche hazards on Sakhalin and the Kuril Islands (1910–2010)[J]. Journal of Glaciology, 2014, 60(221): 409-430.
|
3 |
Zhang Dianfa, Fengquan L, Jianmin B. Eco-environmental effects of the qinghai-Tibet plateau uplift during the Quaternary in China[J]. Environmental Geology, 2000, 39(12): 1352-1358.
|
4 |
Wang Tao, Zhao Yutong, Xu Chaoyi, et al. Atmospheric dynamic constraints on tibetan plateau freshwater under paris climate targets[J]. Nature Climate Change, 2021, 11(3): 219-225.
|
5 |
Keiler M, Knight J, Harrison S. Climate change and geomorphological hazards in the eastern European Alps[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1919): 2461-2479.
|
6 |
McClung D M. Avalanche character and fatalities in the high mountains of Asia[J]. Annals of Glaciology, 2016, 57(71): 114-118.
|
7 |
Zhang Gen, Sun Chunwei, Yang Chengye, et al. Study on the developmental characteristics and distribution pattern of grooved avalanche in palongzangbu river basin[J]. Plateau Science Research,2021,5(1):35-43.
|
|
张根, 孙春卫, 杨成业, 等. 帕隆藏布流域沟槽型雪崩发育特征及分布规律研究[J]. 高原科学研究, 2021, 5(1): 35-43.
|
8 |
Hu Wentao Hu, Yao Tandong, Yu Wusheng, et al. Advances in the study of glacier avalanches in high Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1141-1152.
|
|
胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018, 40(6): 1141-1152.
|
9 |
Wang Shijin, Wen Jiahong. Characteristics, influence of cryosphere disaster and prospect of discipline development[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 523-530.
|
|
王世金, 温家洪. 冰冻圈灾害特征、影响及其学科发展展望[J]. 中国科学院院刊, 2020, 35(4): 523-530.
|
10 |
Schweizer J, Bartelt P, van Herwijnen A. Snow avalanches[M]//Snow and Ice-related Hazards, Risks and Disasters. Amsterdam: Elsevier, 2015: 395-436.
|
11 |
Haeberli W, Whiteman C. Snow and ice-related hazards, risks, and disasters[M]. Waltham, MA: Academic Press, 2021: 259-296.
|
12 |
Jamieson B, Stethem C. Snow avalanche hazards and management in Canada: challenges and progress[J]. Natural Hazards, 2002, 26(1): 35-53.
|
13 |
Seliverstov Y, Glazovskaya T, Shnyparkov A, et al. Assessment and mapping of snow avalanche risk in Russia[J]. Annals of Glaciology, 2008, 49: 205-209.
|
14 |
Chen Hao, Ning Chen, Zhuotong Nan, et al. Correction of the daily precipitation data over the tibetan plateau with machine learning models[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 583-592.
|
|
陈浩, 宁忱, 南卓铜, 等. 基于机器学习模型的青藏高原日降水数据的订正研究[J]. 冰川冻土, 2017, 39(3): 583-592.
|
15 |
Choubin B, Mosavi A, Alamdarloo E H, et al. Earth fissure hazard prediction using machine learning models[J]. Environmental Research, 2019, 179: 108770.
|
16 |
Xiong Pan, Tong Lei, Zhang Kun, et al. Towards advancing the earthquake forecasting by machine learning of satellite data[J]. Science of the Total Environment, 2021, 771: 145256.
|
17 |
Youssef A M, Pourghasemi H R, Pourtaghi Z S, et al. landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 2016, 13(5): 839-856.
|
18 |
Fan Yubin, Guo Weina, Ke Changqing. Texture-assisted glacier recognition based on SAR image[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1326-1334.
|
|
范宇宾, 郭唯娜, 柯长青. 纹理特征辅助的SAR影像冰川识别[J]. 冰川冻土, 2019, 41(6): 1326-1334.
|
19 |
Kavzoglu T, Colkesen I, Sahin EK. Landslides: theory, practice and modelling[M]: Springer International Publishing, 2019: 283-301.
|
20 |
Huang Faming, Cao Zhongshan, Guo Jianfei, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191: 104580.
|
21 |
Yang Jinming, Li Chengzhi, Li Lanhai, et al. Automatic detection of regional snow avalanches with scattering and interference of C-band SAR data[J]. Remote Sensing, 2020, 12(17): 2781.
|
22 |
Choubin B, Borji M, Hosseini F S, et al. Mass wasting susceptibility assessment of snow avalanches using machine learning models[J]. Scientific Reports, 2020, 10(1): 18363.
|
23 |
Choubin B, Borji M, Mosavi A, et al. Snow avalanche hazard prediction using machine learning methods[J]. Journal of Hydrology, 2019, 577: 123929.
|
24 |
Mosavi A, Shirzadi A, Choubin B, et al. Towards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mapping[J]. IEEE Access, 2020, 8: 145968-145983.
|
25 |
Rahmati O, Ghorbanzadeh O, Teimurian T, et al. Spatial modeling of snow avalanche using machine learning models and geo-environmental factors: comparison of effectiveness in two mountain regions[J]. Remote Sensing, 2019, 11(24): 2995.
|
26 |
Wang Yanlong. Snow disaster and prevention along Sichuan-Tibet Highway[M]. Beijing: Ocean Press, 1993.
|
|
王彦龙. 川藏公路沿线雪害与防治[M]. 北京: 海洋出版社, 1993.
|
27 |
Singh K K, Singh D K, Thakur N K, et al. Detection and mapping of snow avalanche debris from Western Himalaya, India using remote sensing satellite images[J]. Geocarto International, 2020: 1-19.
|
28 |
Bühler Y, Hüni A, Christen M, et al. Automated detection and mapping of avalanche deposits using airborne optical remote sensing data[J]. Cold Regions Science and Technology, 2009, 57(2/3): 99-106.
|
29 |
Lato M J, Frauenfelder R, Bühler Y. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery[J]. Natural Hazards and Earth System Sciences, 2012, 12(9): 2893-2906.
|
30 |
Lee S. Current and future status of GIS-based landslide susceptibility mapping: a literature review[J]. Korean Journal of Remote Sensing, 2019, 35(1): 179-193.
|
31 |
Hearn G J, Hart A B. Landslide susceptibility mapping: a practitioner's view[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 5811-5826.
|
32 |
Pourghasemi H R, Teimoori Yansari Z, Panagos P, et al. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005-2016 (periods of 2005-2012 and 2013-2016)[J]. Arabian Journal of Geosciences, 2018, 11(9): 1-12.
|
33 |
Thompson C G, Kim R S, Aloe A M, et al. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results[J]. Basic and Applied Social Psychology, 2017, 39(2): 81-90.
|
34 |
Tamura R, Kobayashi K, Takano Y, et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor[J]. Journal of Global Optimization, 2019, 73(2): 431-446.
|
35 |
Wiederschain G Y. Data mining techniques for the life sciences[J]. Biochemistry (Moscow), 2011, 76(4): 494.
|
36 |
Suthaharan S. Support vector machine[M]//Machine Learning Models and Algorithms for Big Data Classification. Boston, MA: Springer US, 2016: 207-235.
|
37 |
Liu Quanzhong, Chen C, Zhang Yang, et al. Feature selection for support vector machines with RBF kernel[J]. Artificial Intelligence Review, 2011, 36(2): 99-115.
|
38 |
Wu Xueling, Ren Fu, Niu Ruiqing. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China[J]. Environmental Earth Sciences, 2014, 71(11): 4725-4738.
|
39 |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830.
|
40 |
Ramchoun H, Amine M, Idrissi J, et al. Multilayer perceptron: architecture optimization and training[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 4(1): 26.
|
41 |
Kramer O. Dimensionality reduction with unsupervised nearest neighbors[M]: Springer, 2013: 13-23.
|
42 |
Kavzoglu T, Kutlug Sahin E, Colkesen I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district[J]. Natural Hazards, 2015, 76(1): 471-496.
|
43 |
Kraemer HC. Kappa Coefficient[J]. Wiley Statsref: Statistics Reference Online, 2014: 1-4.
|
44 |
Shahabi H, Jarihani B, Tavakkoli Piralilou S, et al. A semi-automated object-based gully networks detection using different machine learning models: A case study of Bowen catchment, Queensland, Australia[J]. Sensors (Basel, Switzerland), 2019, 19(22): 4893.
|
45 |
Mandrekar J N. Receiver operating characteristic curve in diagnostic test assessment[J]. Journal of Thoracic Oncology, 2010, 5(9): 1315-1316.
|
46 |
Sichuan-mountaineering Association. Circulate a notice on the confirmation of a U.S. citizen died in an accident in the climbing of Genie Mountain[EB/OL]. 2006. .
|
|
四川省登山协会. 关于在格聂山登山遇难的一名美国公民身份被证实的情况通报[EB/OL]. 2006. .
|
47 |
Construction-management-preparatory-group-of-Ganzi-gennie-Shenshan-scenic-area-in-Sichuan Province. An snow avalanche released in Ganzi, Sichuan Province: a hiking team witnessed the whole process[EB/OL]. 2020. .
|
|
四川甘孜格聂神山景区建设管理筹备组. 四川甘孜格聂神山发生雪崩, 一支徒步探险队目睹全过程直呼震撼[EB/OL]. 2020. .
|