1 |
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2018.
|
|
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2018.
|
2 |
Ma Wei, Wang Dayan . et al. The mechanics of frozen soil[M]. Beijing: Science Press, 2014.
|
|
马巍, 王大雁, 等. 冻土力学[M]. 北京: 科学出版社, 2014.
|
3 |
Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. 2nd ed. Beijing: Science Press, 2001.
|
|
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 2版. 北京: 科学出版社, 2001.
|
4 |
Zhang Lianhai, Ma Wei, Yang Chengsong, et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology, 2014, 35(6): 1505-1518.
|
|
张莲海, 马巍, 杨成松, 等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2014, 35(6): 1505-1518.
|
5 |
Tan Long, Wei Changfu, Tian Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572.
|
|
谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572.
|
6 |
Zhang Lianhai, Zhuang Qianlai, Wen Zhi, et al. Spatial state distribution and phase transition of non-uniform water in soils: Implications for engineering and environmental sciences[J]. Advances in Colloid and Interface Science, 2021, 294: 102465.
|
7 |
Dong Xiaohong, Zhang Aijun, Lian Jiangbo, et al. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology, 2010, 18(6): 887-893.
|
|
董晓宏, 张爱军, 连江波, 等. 长期冻融循环引起黄土强度劣化的试验研究[J]. 工程地质学报, 2010, 18(6): 887-893.
|
8 |
Xiao Donghui, Feng Wenjie, Zhang Ze, et al. Research on the relationship between permeability and construction feature of loess under the freeze-thaw cycles[J]. Hydrogeology and Engineering Geology, 2015, 42(4): 43-49.
|
|
肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水文地质工程地质, 2015, 42(4): 43-49.
|
9 |
Yang Chengsong, He Ping, Cheng Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2695-2699.
|
10 |
Liu Jiankun, Peng Lü, Cui Yinghui, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold regions science and technology, 2014, 104: 1-6.
|
11 |
Shen Zhongyan, Wu Ziwang. Basic form of the failure criteria of triaxial strength of frozen soils and its relativity to unfrozen water[J]. Glaciology and Geocryology, 1999, 21(1): 22-26.
|
|
沈忠言, 吴紫汪. 冻土三轴强度破坏准则的基本形式及其与未冻水含量的相关性[J]. 冰川冻土, 1999, 21(1): 22-26.
|
12 |
Zhang Sheng, He Zuoyue, Teng Jidong, et al. Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 961-968.
|
|
张升, 贺佐跃, 滕继东, 等. 非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968.
|
13 |
Tice A R, Anderson D M, Banin A. The prediction of unfrozen water contents in frozen soils from liquid limit determinations[M]. Department of Defense, Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1976.
|
14 |
Leng Yifei, Zhang Xifa, Yang Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764.
|
|
冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
|
15 |
Li Shunqun, Gao Lingxia, Chai Shouxi. Significance and interaction of factors on mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4): 1173-1177.
|
|
李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4): 1173-1177.
|
16 |
Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41.
|
17 |
Mohnke O, Yaramanci U. Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing[J]. Journal of Applied Geophysics, 2002, 50(1/2): 163-177.
|
18 |
Gao S, Chapman W G, House W. Application of low field NMR T2 measurements to clathrate hydrates[J]. Journal of Magnetic Resonance, 2009, 197(2): 208-212.
|
19 |
Bird N R A, Preston A R, Randall E W, et al. Measurement of the size distribution of water‐filled pores at different matric potentials by stray field nuclear magnetic resonance[J]. European Journal of Soil Science, 2005, 56(1): 135-143.
|
20 |
Coates G R, Xiao L, Prammer M G. NMR logging: principles and applications[M]. Houston: Haliburton Energy Services, 1999.
|
21 |
Tian Huihui, Wei Changfu. Test and analysis of soil adsorption water content based on nuclear magnetic resonance technology[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305.
|
|
田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305.
|
22 |
Cheng Hua, Chen Hanqing, Cao Guangyong, et al. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799.
|
|
程桦, 陈汉青, 曹广勇, 等. 冻土毛细-薄膜水分迁移机制及其试验验证[J]. 岩土工程学报, 2020, 42(10): 1790-1799.
|
23 |
Lu Ning. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
|
24 |
Zhang Jiwen, Mu Qingyi, Liao Hongjian. A soil freezing characteristic curve model for capturing void ratio and specific surface area effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 41(9): 2913-2921.
|
|
张继文, 穆青翼, 廖红建, 等. 考虑土体孔隙比和比表面积影响的未冻 结体积含水率曲线模型[J]. 岩土力学, 2020, 41(9): 2913-2921.
|
25 |
Kozlowski T. Some factors affecting supercooling and the equilibrium freezing point in soil-water systems[J]. Cold Regions Science and Technology, 2009, 59(1): 25-33.
|
26 |
Lei Xiangyi, Wang Shufa. Pore size and collapsibility of loess[J]. Hydrogeology Engineering Geology, 1987, 14(5): 15-18.
|
|
雷祥义, 王书法. 黄土的孔隙大小与湿陷性[J]. 水文地质工程地质, 1987, 14(5): 15-18.
|
27 |
Kou Jingyuan, Ma Xinyan, Teng Jidong, et al. Hysteresis effect of unfrozen water content in soil based on pore structure[J]. China Journal of Highway and Transport, 2020, 33(9): 115.
|
|
寇璟媛, 马新岩, 滕继东, 等. 基于孔隙结构的土体未冻水含量滞回效应研究[J]. 中国公路学报, 2020, 33(9): 115.
|
28 |
Zhang Lianhai, Ma Wei, Yang Chengsong, et al. An investigation of pore water pressure and consolidation phenomenon in the unfrozen zone during soil freezing[J]. Cold Regions Science and Technology, 2016, 130: 21-32.
|
29 |
Xie Mengying, Zhang Wenbo, Tang Kexuan, et al. An analysis and study of the influence of ion concentration on nuclear magnetic resonance response signal of frozen soil[J]. Geophysical and Geochemical Exploration, 2017 41(6): 1262-1267.
|
|
谢梦莹, 张文波, 汤克轩, 等. 离子浓度对冻土核磁共振响应信号的影响分析及研究[J]. 物探与化探, 2017, 41(6): 1262-1267.
|
30 |
Zhou Keping, Li Jielin, Xu Yujuan, et al. Measurement of rock pore structure based on NMR technology[J]. Journal of Central South University. Science and Technology, 2012, 43(12): 4796-4800.
|
|
周科平, 李杰林, 许玉娟, 等. 基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报, 自然科学版, 2012, 43(12): 4796-4800.
|
31 |
Kong Bowen, Ding Zhi, He Shaoheng. Experimental study on pore features and dynamic behaviors of soft clay under different confine pressures during freezing[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2328-2340.
|
|
孔勃文, 丁智, 何绍衡, 等. 冻压条件下冻融软土孔隙特征与动力特性分析[J]. 岩石力学与工程学报, 2020, 39(11): 2328-2340.
|
32 |
Xue Ke, Wen Zhi, Zhang Mingli, et al. Relationship between matric potential, moisture migration and frost heave in freezing process of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 176-183.
|
|
薛珂, 温智, 张明礼, 等. 土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报, 2017, 33(10): 176-183.
|
33 |
Wang Tiehang, Zhan Shude, Equation for water vaporous transfer in unsaturated soil[J]. China Journal of Highway and Transport, 2003, 16(2): 18-21.
|
|
王铁行, 赵树德. 非饱和土体气态水迁移引起的含水量变化方程[J]. 中国公路学报, 2003, 16(2): 18-21.
|
34 |
Nakano Y, Tice A, Oliphant J. Transport of water in frozen soil IV. Analysis of experimental results on the effects of ice content[J]. Advances in Water Resources, 1984, 7(2): 58-66.
|
35 |
Yin Xiao, Liu Enlong, Song Bingtang, et al. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil[J]. Cold Regions Science and Technology, 2018, 155: 20-28.
|
36 |
Teng J, Shan F, He Z, et al. Experimental study of ice accumulation in unsaturated clean sand[J]. Géotechnique, 2019, 69(3): 251-259.
|
37 |
Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradients[J]. Eos, Transactions American Geophysical Union, 1957, 38(2): 222-232.
|