冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 34-45.doi: 10.7522/j.issn.1000-0240.2022.0018
收稿日期:
2021-03-30
修回日期:
2021-12-10
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
段克勤
E-mail:zhangyi19@snnu.edu.cn;kqduan@snnu.edu.cn
作者简介:
张怡,硕士研究生,主要从事气候变化与自然灾害研究. E-mail: zhangyi19@snnu.edu.cn
基金资助:
Yi ZHANG(), Keqin DUAN(
), Peihong SHI
Received:
2021-03-30
Revised:
2021-12-10
Online:
2022-02-28
Published:
2022-03-28
Contact:
Keqin DUAN
E-mail:zhangyi19@snnu.edu.cn;kqduan@snnu.edu.cn
摘要:
大气0 ℃层高度是决定青藏高原冰冻圈消融状态的重要指标。基于ERA5再分析资料,分析了1979—2019年青藏高原夏季大气0 ℃层高度时空变化,发现青藏高原夏季大气0 ℃层高度介于4 423~5 972 m之间,以高原中南部(30°~32° N,83.5°~88.5° E)为高值中心,呈纬向分带状向四周逐渐降低。过去41 a青藏高原夏季大气0 ℃层高度总体呈持续上升趋势,高原北部上升趋势大于南部,祁连山地区上升趋势最为明显,为60 m?(10a)-1,而在高原西南部略呈下降趋势。平均而言,青藏高原夏季地面温度每升高1 ℃,大气0 ℃层高度升高122 m。利用CMIP6模式数据,预估在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四种社会共享路径情景下,2020—2100年期间青藏高原夏季大气0 ℃层高度都呈现升高趋势,但不同情景下升高趋势在空间上差别较大。相对于1979—2014年参考时段,在四种情景下,到2081—2100年青藏高原夏季平均大气0 ℃层高度将分别升高265 m、394 m、576 m 和729 m;相对应的是到2081—2100年,在高原上处于夏季大气0 ℃层高度以下的冰川面积分别为第二次冰川编目数据的79%、86%、94%和98%。仅从夏季大气0 ℃层高度变化角度看,在SSP5-8.5情景下,到本世纪末期,预估除帕米尔高原和昆仑山西北部地区外,青藏高原其他地区的冰川在夏季将不存在积累区。
中图分类号:
张怡, 段克勤, 石培宏. 1979—2100年青藏高原夏季大气0 ℃层高度变化分析[J]. 冰川冻土, 2022, 44(1): 34-45.
Yi ZHANG, Keqin DUAN, Peihong SHI. Analysis of the 0 ℃ level height variation over the Qinghai-Tibet Plateau in summer from 1979 to 2100[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 34-45.
表1
ERA5再分析资料和MIROC6模式数据与探空站数据夏季大气0 ℃层高度的误差指标 (m)"
合作 | 格尔木 | 都兰 | 西宁 | 玉树 | 甘孜 | 那曲 | 昌都 | ||
---|---|---|---|---|---|---|---|---|---|
平均值 | 探空站 | 5 037 | 5 126 | 5 136 | 4 885 | 5 497 | 5 517 | 5 833 | 5 638 |
ERA5 | 5 023 | 5 102 | 5 124 | 4 930 | 5 460 | 5 500 | 5 737 | 5 593 | |
MIROC6 校正前 | 4 970 | 4 946 | 4 996 | 4 875 | 5 320 | 5 389 | 5 627 | 5 428 | |
MIROC6 校正后 | 5 025 | 5 112 | 5 128 | 4 915 | 5 462 | 5 502 | 5 745 | 5 596 | |
相关系数 | ERA5 | 0.96 | 0.95 | 0.97 | 0.94 | 0.94 | 0.97 | 0.93 | 0.90 |
CMIP6 | 0.19 | 0.23 | 0.28 | 0.26 | 0.25 | 0.15 | 0.02 | 0.09 | |
绝对偏差 | ERA5 | -14 | -24 | -12 | 45 | -37 | -17 | -96 | -45 |
MIROC6 校正前 | -67 | -180 | -140 | -10 | -177 | -128 | -206 | -210 | |
MIROC6 校正后 | -12 | -14 | -8 | 30 | -35 | -15 | -88 | -42 | |
相对偏差 | ERA5 | -0.28% | -0.47% | -0.23% | 0.92% | -0.67% | -0.31% | -1.65% | -0.80% |
MIROC6 校正前 | -1.33% | -3.51% | -2.73% | -0.20% | -3.22% | -2.32% | -3.53% | -3.72% | |
MIROC6校正后 | -0.24% | -0.27% | -0.16% | 0.61% | -0.64% | -0.27% | -1.51% | -0.74% |
1 | Yao Tandong, Xue Yongkang, Chen Deliang, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444. |
2 | Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. | |
3 | Di Yangping, Zhang Yangjian, Zeng Hui, et al. Effects of changed Asian water tower on Tibetan Plateau ecosystem: a review[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1322-1331. |
底阳平, 张扬建, 曾辉, 等. “亚洲水塔”变化对青藏高原生态系统的影响[J]. 中国科学院院刊, 2019, 34(11): 1322-1331. | |
4 | Gao Yongpeng, Yao Xiaojun, Liu Shiyin, et al. Spatial-temporal variation of glacier resources in the Hexi interior from 1956 to 2017[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1313-1325. |
高永鹏, 姚晓军, 刘时银, 等. 1956—2017年河西内流区冰川资源时空变化特征[J]. 冰川冻土, 2019, 41(6): 1313-1325. | |
5 | Zhu Rong, Chen Jizu, Sun Weijun, et al. Ice temperature changing with elevations of a polythermal valley glacier in the northern Tibetan Plateau: a case study on the Laohugou Glacier No.12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1292-1301. |
朱荣, 陈记祖, 孙维君, 等. 青藏高原北部多温型山谷冰川不同海拔处冰温变化研究——以祁连山老虎沟12号冰川为例[J]. 冰川冻土, 2019, 41(6): 1292-1301. | |
6 | Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035. |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035. | |
7 | Wang Bin, Bao Qing, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14): L14702. |
8 | Diaz H F, Graham N E. Recent changes in tropical freezing heights and the role of sea surface temperature[J]. Nature, 1996, 383(6596): 152-155. |
9 | Bradley R S, Keimig F T, Diaz H F, et al. Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions[J]. Geophysical Research Letters, 2009, 36(17): L17701. |
10 | Diaz H F, Eischeid J K, Duncan C, et al. Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years[J]. Climatic Change, 2003, 59: 33-52. |
11 | Huang Xiaoyan, Zhang Mingjun, Wang Shengjie, et al. Variation of 0 ℃ isotherm height and ground temperature in summer in northwest China during the past 50 years[J]. Acta Geographica Sinica, 2011, 66(9): 1191-1199. |
黄小燕, 张明军, 王圣杰, 等. 中国西北地区近50年夏季0 ℃层高度及气温时空变化特征[J]. 地理学报, 2011, 66(9): 1191-1199. | |
12 | Qiang Fang, Zhang Mingjun, Wang Shengjie, et al. Variation of free-air 0 ℃Isotherm height over tomur peak in the Tianshan Mountain, Xinjiang Uygur Autonomous Region[J]. Research of Soil and Water Conservation, 2016, 23(1): 325-331. |
强芳, 张明军, 王圣杰, 等. 新疆天山托木尔峰地区夏季大气0 ℃层高度变化[J]. 水土保持研究, 2016, 23(1): 325-331. | |
13 | Zhang Guangxing, Yang Lianmei, Yang Qing. Changing trend and abrupt change of the 0 ℃ level height in summer in Xinjiang from 1960 to 2002[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 376-380. |
张广兴, 杨莲梅, 杨青. 新疆43 a来夏季0 ℃层高度变化和突变分析[J]. 冰川冻土, 2005, 27(3): 376-380. | |
14 | Zhao Aifang, Zhang Mingjun, Sun Meiping, et al. Changes in 0 ℃ isotherm height of southwest China during 1960-2010[J]. Acta Geographica Sinica, 2013, 68(7): 994-1006. |
赵爱芳, 张明军, 孙美平, 等. 1960—2010年中国西南地区0 ℃层高度变化特征[J]. 地理学报, 2013, 68(7): 994-1006. | |
15 | Dong Yuanchang, Wu Yao, Wang Yuancheng. The spatial and temporal distribution characteristics of the height of the melting layer over Sichuan Basin and its surroundings in summer[J]. Plateau and Mountain Meteorology Research, 2018, 38(2): 9-14. |
董元昌, 吴遥, 王源程. 四川盆地及周边地区夏季0 ℃层高度时空分布特征[J]. 高原山地气象研究, 2018, 38(2): 9-14. | |
16 | Ma Xuening, Zhang Mingjun, Wang Shengjie, et al. Variation in summer 0 ℃ level height and its relationships with temperature and precipitation over the Yellow River Basin[J]. Resources Science, 2011, 33(12): 2302-2307. |
马雪宁, 张明军, 王圣杰, 等. 黄河流域夏季0 ℃层高度变化及与地面气温和降水量的关系[J]. 资源科学, 2011, 33(12): 2302-2307. | |
17 | Zhou Panpan, Zhang Mingjun, Wang Shengjie, et al. Variation and its influences of 0 ℃ isotherm height in summer over high Asia[J]. Plateau Meteorology, 2017, 36(2): 371-383. |
周盼盼, 张明军, 王圣杰, 等. 高亚洲地区夏季0 ℃层高度变化及其影响特征研究[J]. 高原气象, 2017, 36(2): 371-383. | |
18 | Wang Liwei, Zhang Mingjun, Gao Feng. Variation of 0 ℃ atmospheric height in the headwaters of Changjiang River in summer during 1977-2010[J]. Plateau Meteorology, 2014, 33(3): 769-774. |
王立伟, 张明军, 高峰. 1977—2010年长江源区夏季大气0 ℃层高度变化[J]. 高原气象, 2014, 33(3): 769-774. | |
19 | Li Guochang, Liu Shixiang, Zhang Cunjie, et al. Analysis on 0 ℃ level height change in summer over northeast side of Qilian Mountain[J]. Arid Meteorology, 2006, 24(3): 31-34, 41. |
李国昌, 刘世祥, 张存杰, 等. 祁连山东北侧夏季零度气温层高度变化研究[J]. 干旱气象, 2006, 24(3): 31-34, 41. | |
20 | Huang Xiaoyan, Wang Xiaoping, Wang Jinsong, et al. Spatio-temporal changes of 0 ℃ isotherm height in China during summer half year of 1970—2012[J]. Meteorological Monthly, 2017, 43(3): 286-293. |
黄小燕, 王小平, 王劲松, 等. 1970—2012年夏半年中国大气0 ℃层高度时空变化特征[J]. 气象, 2017, 43(3): 286-293. | |
21 | Cheng Ying, Li Dongliang, Hu Wenchao, et al. Relationship between glacial thaw of Qilian Mountain and upper temperature[J]. Plateau Meteorology, 2002, 21(2): 217-221. |
程瑛, 李栋梁, 胡文超, 等. 祁连山冰川消融与高空气温变化的关系[J]. 高原气象, 2002, 21(2): 217-221. | |
22 | Zhang Guangxing, Sun Shufang, Zhao Ling, et al. The response of the Glacier No.1 to the height change of the 0 ℃ level in summer at the riverhead of the Urumqi River, Tianshan mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1057-1062. |
张广兴, 孙淑芳, 赵玲, 等. 天山乌鲁木齐河源1号冰川对夏季0 ℃层高度变化的响应[J]. 冰川冻土, 2009, 31(6): 1057-1062. | |
23 | Wang Shengjie, Zhang Mingjun, Pepin N C, et al. Recent changes in freezing level heights in High Asia and their impact on glacier changes[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(4): 1753-1765. |
24 | Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt (ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350. |
张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350. | |
25 | Mao Weiyi, Chen Pengxiang, Shen Yongping. Characteristics and effects of the extreme maximum air temperature in the summer of 2015 in Xinjiang under global warming[J]. Journal of Glaciology and Geocryology, 2016(2): 291-304. |
毛炜峄, 陈鹏翔, 沈永平. 气候变暖背景下2015年夏季新疆极端高温过程及其影响[J]. 冰川冻土, 2016(2): 291-304. | |
26 | Fu Hua, Jia Lihong, Xiao Jidong, et al. Classification of snowmelt flood and analysis on its formation causes in the kumalak river basin[J]. Arid Zone Research, 2011, 28(3): 433-437. |
傅华, 贾丽红, 肖继东, 等. 阿克苏地区库玛拉克河流域融雪洪水分型及成因[J]. 干旱区研究, 2011, 28(3): 433-437. | |
27 | Zhang Guangxing. The response of annual runoff to the height change at the zero temperature level in summer over Xinjiang[J]. Acta Geographica Sinica, 2007, 62(3): 279-290. |
张广兴. 新疆夏季0 ℃层高度变化对河流年径流量的影响[J]. 地理学报, 2007, 62(3): 279-290. | |
28 | Yang Peng, Chen Yaning, Li Weihong, et al. Analysis of changes in runoff and drying in the Tarim River from 2003 to 2012[J]. Resources Science, 2015, 37(3): 485-493. |
杨鹏, 陈亚宁, 李卫红, 等. 2003—2012年新疆塔里木河径流量变化与断流分析[J]. 资源科学, 2015, 37(3): 485-493. | |
29 | Sun Guili, Chen Yaning, Li Weihong, et al. The response of glacial lake outburst floods to climate change in the Yarkant River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 580-586. |
孙桂丽, 陈亚宁, 李卫红, 等. 新疆叶尔羌河冰川湖突发洪水对气候变化的响应[J]. 冰川冻土, 2010, 32(3): 580-586. | |
30 | Wang Yongli, Yusup·Abdulla, Ma Hongwu, et al. Response of summer average discharge in the Hotan River to changes in regional 0 ℃ level height[J]. Advances in Climate Change Research, 2008, 4(3): 151-155. |
王永莉, 玉苏甫·阿布都拉, 马宏武, 等. 和田河夏季流量对区域0 ℃层高度变化的响应[J]. 气候变化研究进展, 2008, 4(3): 151-155. | |
31 | Zhang Junlan, Duan Jianjun. Analyses on springtime runoff variance of Aksu River and its climate causes[J]. Plateau Meteorology, 2009, 28(2): 465-473. |
张俊岚, 段建军. 阿克苏河流域春季径流变化及气候成因分析[J]. 高原气象, 2009, 28(2): 465-473. | |
32 | Gong Weihua, Wang Yanguo, Zhao Chengyi, et al. The hydrological characteristics in Aksu River in lowflow year of 2009 and its effects on the ecological environment of the Tarim River mainstream[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 602-608. |
龚伟华, 王彦国, 赵成义, 等. 2009年阿克苏河枯水年水文特征及其对塔里木河干流生态环境的影响[J]. 冰川冻土, 2010, 32(3): 602-608. | |
33 | Chen Zhongsheng, Chen Yaning, Li Weihong. Response of runoff to change of atmospheric 0 ℃ level height in summer in arid region of Northwest China[J]. Scientia Sinica Terrae, 2012, 42(11): 1770-1780. |
陈忠升, 陈亚宁, 李卫红. 中国西北干旱区夏季径流量对大气0 ℃层高度变化的响应[J]. 中国科学: 地球科学, 2012, 42(11): 1770-1780. | |
34 | Shang Li, Huang Yuying, Mao Weiyi. Features of the snow and ice meltwater flood caused by high temperature in the Southern Xinjiang Region during the summer of 2015[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 480-487. |
商莉, 黄玉英, 毛炜峄. 2015年夏季南疆地区高温冰雪洪水特征[J]. 冰川冻土, 2016, 38(2): 480-487. | |
35 | Pan Shukun, Zhang Mingjun, Wang Shengjie, et al. Relationship between streamflow in summer at the headwaters of Urumqi River in the Tianshan mountains and the 0 ℃ isotherm height[J]. Resources Science, 2012, 34(8): 1565-1573. |
潘淑坤, 张明军, 王圣杰, 等. 天山乌鲁木齐河源区夏季径流量与0 ℃层高度的关系[J]. 资源科学, 2012, 34(8): 1565-1573. | |
36 | Gong Hengrui, Shi Yu, Feng Zhimin. Relationship between the 0 ℃ layer height and the streamflow of the Urumqi River in the period of spring snowmelt[J]. Arid Zone Research, 2010, 27(1): 69-74. |
宫恒瑞, 石玉, 冯志敏. 春季融雪期0 ℃层高度与乌鲁木齐河径流量的关系[J]. 干旱区研究, 2010, 27(1): 69-74. | |
37 | Mao Weiyi, Wu Jun, Chen Chunyan. Relationship of 0 ℃ level height and summer flood of Aksu River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2004, 26(6): 697-704. |
毛炜峄, 吴钧, 陈春艳. 0 ℃层高度与夏季阿克苏河洪水的关系[J]. 冰川冻土, 2004, 26(6): 697-704. | |
38 | Zhang Yinsheng, Guo Y. Variability of atmospheric freezing-level height and its impact on the cryosphere in China[J]. Annals of Glaciology, 2011, 52(58): 81-88. |
39 | Dong Lei, Zhang Mingjun, Wang Shengjie, et al. The freezing level height in the Qilian Mountains, northeast Tibetan Plateau based on reanalysis data and observations, 1979—2012[J]. Quaternary International, 2015, 380: 60-67. |
40 | Huang Xiaoyan, Wang Shengjie, Wang Jinsong, et al. Spatio-temporal changes in free-air freezing level heights in Northwest China, 1960-2012[J]. Quaternary International, 2013, 313/314: 130-136. |
41 | Zhu Zhi, Shi Chunxiang, Gu Junxia, et al. Ground temperature spatial and temporal variation in Qinghai-Xizang Plateau in recent 10 years[J]. Science Technology and Engineering, 2020, 20(10): 3828-3837. |
朱智, 师春香, 谷军霞, 等. 近10 a来青藏高原地表温度时空变化特征分析[J]. 科学技术与工程, 2020, 20(10): 3828-3837. | |
42 | Qin Yanhui, Wu Tonghua, Li Ren, et al. The applicability of ERA-Interim land surface temperature dataset to map the permafrost distribution over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1534-1543. |
秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度数据集在青藏高原冻土分布制图应用的适用性评估[J]. 冰川冻土, 2015, 37(6): 1534-1543. | |
43 | He Dongyan, Tian Hong, Deng Weitao. Applicability analysis of three reanalysis surface temperature data over the Tibetan Plateau[J]. Transactions of Atmospheric Sciences, 2013, 36(4): 458-465. |
何冬燕, 田红, 邓伟涛. 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报, 2013, 36(4): 458-465. | |
44 | Li Ruiqing, Shihua Lü, Han Bo, et al. Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau[J]. Plateau Meteorology, 2012, 31(6): 1488-1502. |
李瑞青, 吕世华, 韩博, 等. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502. | |
45 | Cao Yang, Chen Hongbin, Li Jun, et al. Characteristic and correlation between surface temperature and 0 ℃ isotherm height derived from ERA-interim reanalysis and radiosonde data[J]. Plateau Meteorology, 2017, 36(6): 1608-1618. |
曹杨, 陈洪滨, 李军, 等. 利用再分析与探空资料对0 ℃层高度和地面气温变化特征及其相关性的分析[J]. 高原气象, 2017, 36(6): 1608-1618. | |
46 | Zhu Jing, Yuan Huizhen. Applicability of ERA reanalysis data of land surface temperature in Zhejiang Province[J]. Meteorological Science and Technology, 2019, 47(2): 289-298. |
朱景, 袁慧珍. ERA再分析陆面温度资料在浙江省的适用性[J]. 气象科技, 2019, 47(2): 289-298. | |
47 | Meng Xiangui, Guo Junjian, Han Yongqing. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99. |
孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99. | |
48 | Jing Hui, Zhao Lin, Meng Xianhong, et al. Effects of shallow residual layer on the development of the convective boundary layer in Naqu area[J]. Plateau Meteorology, 2020, 39(6): 1318-1328. |
景慧, 赵林, 孟宪红, 等. 那曲地区浅薄残余层对对流边界层发展的影响[J]. 高原气象, 2020, 39(6): 1318-1328. | |
49 | Wang X L. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test[J]. Journal of Applied Meteorology and Climatology, 2008, 47(9): 2423-2444. |
50 | Wang X L. Penalized maximal F test for detecting undocumented mean shift without trend change[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(3): 368-384. |
51 | O’Neill B C, Tebaldi C, van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461-3482. |
52 | Zhang Lixia, Chen Xiaolong, Xin Xiaoge. Short commentary on CMIP6 scenario model intercomparison project(ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519-525. |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. | |
53 | Wei Fengying. Modern climate statistical diagnosis and forecasting technique[M]. 2nd. Beijing: China Meteorological Press, 2007. |
魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007. | |
54 | Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half century: based on the revised First and Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(9): 1402-1414. |
孙美平, 刘时银, 姚晓军, 等. 近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J]. 地理学报, 2015, 70(9): 1402-1414. | |
55 | Duan Keqin, Yao Tandong, Shi Peihong, et al. Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau[J]. Scientia Sinica Terrae, 2017, 47(1): 104-113. |
段克勤, 姚檀栋, 石培宏, 等. 青藏高原东部冰川平衡线高度的模拟及预测[J]. 中国科学: 地球科学, 2017, 47(1): 104-113. |
[1] | 李纯, 姜彤, 王艳君, 缪丽娟, 李溯源, 陈梓延, 吕嫣冉. 基于CMIP6模式的黄河上游地区未来气温模拟预估[J]. 冰川冻土, 2022, 44(1): 171-178. |
[2] | 孟雅丽, 段克勤, 尚溦, 李双双, 邢莉, 石培宏. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33. |
[3] | 柴乐, 张威, 刘亮, 马瑞丰, 唐倩玉, 李亚鹏, 乔静茹. 青藏高原东南部他念他翁山全新世早中期冰进事件研究[J]. 冰川冻土, 2022, 44(1): 307-315. |
[4] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[5] | 刘广岳, 邹德富, 杨斌, 杜二计, 周华云, 肖瑶, 赵林, 谭昌海, 胡国杰, 庞强强, 王武, 孙哲, 朱小凡, 殷秀峰, 汪凌霄, 李智斌, 谢昌卫. 青藏高原腹地各拉丹冬南北坡多年冻土考察初步结果[J]. 冰川冻土, 2022, 44(1): 83-95. |
[6] | 罗京, 牛富俊, 林战举, 刘明浩, 尹国安, 高泽永. 青藏高原多年冻土区热融滑塌发育特征及规律[J]. 冰川冻土, 2022, 44(1): 96-105. |
[7] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[8] | 卓嘎,罗布,巴桑曲珍. 青藏高原那曲中部土壤温湿分布特征[J]. 冰川冻土, 2021, 43(6): 1704-1717. |
[9] | 王世金,魏彦强,牛春华,张云飞. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43(6): 1848-1860. |
[10] | 李若晨,申保收,武小波,杨方社,郭忠明. 青藏高原典型山地冰川中痕量元素的空间分布和来源分析[J]. 冰川冻土, 2021, 43(5): 1277-1289. |
[11] | 曹瑜,游庆龙,蔡子怡. 1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J]. 冰川冻土, 2021, 43(5): 1290-1300. |
[12] | 王一博,吕明侠,赵海鹏,高泽永. 青藏高原多年冻土区活动层土壤入渗特征及机理分析[J]. 冰川冻土, 2021, 43(5): 1301-1311. |
[13] | 张庆杰,陶辉,苏布达,窦挺峰,姜彤. 基于CMIP6气候模式的新疆积雪深度时空格局研究[J]. 冰川冻土, 2021, 43(5): 1435-1445. |
[14] | 段群滔,罗立辉. 人类活动强度空间化方法综述与展望[J]. 冰川冻土, 2021, 43(5): 1582-1593. |
[15] | 刘艺阗, 姚济敏, 赵林, 肖瑶, 乔永平, 史健宗. 青藏高原唐古拉多年冻土区冻融循环过程中的能量平衡特征[J]. 冰川冻土, 2021, 43(4): 1073-1082. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000