冰川冻土 ›› 2022, Vol. 44 ›› Issue (1): 133-146.doi: 10.7522/j.issn.1000-0240.2022.0025
收稿日期:
2021-08-21
修回日期:
2022-02-03
出版日期:
2022-02-28
发布日期:
2022-03-28
通讯作者:
张万昌
E-mail:chenlongfei19@mails.ucas.ac.cn;zhangwc@radi.ac.cn
作者简介:
陈龙飞,硕士研究生,主要从事积雪、冰川及水资源量的变化研究. E-mail: chenlongfei19@mails.ucas.ac.cn
基金资助:
Longfei CHEN1,2(), Wanchang ZHANG1(
), Huiran GAO1,2
Received:
2021-08-21
Revised:
2022-02-03
Online:
2022-02-28
Published:
2022-03-28
Contact:
Wanchang ZHANG
E-mail:chenlongfei19@mails.ucas.ac.cn;zhangwc@radi.ac.cn
摘要:
三江源地区气象站点稀疏,依靠地面台站数据难以反映地面真实积雪情况。利用卫星遥感数据引入重心模型分析了三江源地区1980—2019年4个积雪参数(积雪日数、积雪深度、积雪初日和积雪终日)的时空动态特征,利用Mann-Kendall检验和Sen斜率估计分析了积雪和气候因子的变化趋势,并探究积雪对气候变化的响应。结果表明:1980—2019年三江源地区呈现积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的变化趋势,而该区域同期的气温和降水量则呈现上升趋势;4个积雪参数重心均呈现出东移趋势,而同期气温重心则呈现西移趋势,气温重心位置西移速率分别是积雪日数和积雪深度重心位置东移速率的6倍和2倍。这表明该区域4个积雪参数以及气候因子的变化趋势具有较强的空间异质性,西部气温升高速率大于东部,导致西部积雪日数和积雪深度减少速率同样大于东部,从而导致气温重心西移而积雪参数重心东移。澜沧江源区积雪日数减少、积雪深度减少、积雪初日推迟以及积雪终日提前的速率最大,其次是长江源区和黄河源区。进一步的相关性分析表明,三江源地区年平均气温的升高是导致积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的主要影响因子,积雪日数对气温升高响应最敏感,其次是积雪深度、初日和终日;而年降水量与4个积雪参数的相关性均不显著。研究可为三江源地区水资源和生态环境保护提供基础资料和理论依据。
中图分类号:
陈龙飞, 张万昌, 高会然. 三江源地区1980—2019年积雪时空动态特征及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 133-146.
Longfei CHEN, Wanchang ZHANG, Huiran GAO. Spatiotemporal dynamic characteristics of snow cover from 1980 to 2019 in the Three-River-Source region and its response to climate change[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 133-146.
1 | Xuan Wei. Protection of the Three-River-Source region, how to act in culture[J]. China Water Resources, 2016(17): 1-6. |
轩玮. 三江源保护, 文化如何行动[J]. 中国水利, 2016(17): 1-6. | |
2 | Sun Qingling, Li Baolin, Li Fei, et al. Review on the estimation of net primary productivity of vegetation in the Three-River Headwater region, China[J]. Acta Geographica Sinica, 2016, 71(9): 1596-1612. |
孙庆龄, 李宝林, 李飞, 等. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9): 1596-1612. | |
3 | Li Sisi, Yao Zhijun, Wang Rui, et al. Dryness/wetness pattern over the Three-River Headwater region: variation characteristic, causes, and drought risks[J]. International Journal of Climatology, 2020, 40(7): 3550-3566. |
4 | Wang Suizi, Fan Jiangwen, Li Yuzhe, et al. Dynamic response of water retention to grazing activity on grassland over the Three River Headwaters region[J]. Agriculture, Ecosystems & Environment, 2019, 286: 106662. |
5 | Wang Hai’e, Li Shengchen, Zhang Qingmei, et al. Changes of the days with snow cover on the Qinghai Plateau during 1961—2013[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1219-1226. |
王海娥, 李生辰, 张青梅, 等. 青海高原1961—2013年积雪日数变化特征分析[J]. 冰川冻土, 2016, 38(5): 1219-1226. | |
6 | Wang Wei, Huang Xiaodong, Deng Jie, et al. Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover product[J]. Remote Sensing, 2015, 7(1): 169-194. |
7 | Wang Hui, Wang Shengli, Yu Xingjie, et al. Spatial-temporal variation of snow cover in Xinjiang based on surface observation from 1961 to 2017[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 72-80. |
王慧, 王胜利, 余行杰, 等. 1961—2017年基于地面观测的新疆积雪时空变化研究[J]. 冰川冻土, 2020, 42(1): 72-80. | |
8 | Qin Dahe, Xiao Cunde, Ding Yongjian, et al. Progress on cryospheric studies by international and Chinese communities and perspectives[J]. Journal of Applied Meteorological Science, 2006, 17(6): 649-656. |
秦大河, 效存德, 丁永建, 等. 国际冰冻圈研究动态和我国冰冻圈研究的现状与展望[J]. 应用气象学报, 2006, 17(6): 649-656. | |
9 | Liu Jinping, Zhang Wanchang, Deng Cai, et al. Spatiotemporal variations of snow cover over Yarlung Zangbo River basin in Tibet from 2000 to 2014 and its response to key climate factors[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 643-654. |
刘金平, 张万昌, 邓财, 等. 2000—2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究[J]. 冰川冻土, 2018, 40(4): 643-654. | |
10 | Xu Wenfang, Ma Lijuan, Ma Minna, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521-1533. |
11 | Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003—2010[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1337-1344. |
孙燕华, 黄晓东, 王玮, 等. 2003—2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(6): 1337-1344. | |
12 | Shen S S P, Yao Ruzhen, Ngo J, et al. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997—2011[J]. Theoretical and Applied Climatology, 2015, 120(3): 445-453. |
13 | Ma Lijuan, Qin Dahe. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957—2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11. |
马丽娟, 秦大河. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1): 1-11. | |
14 | Liu Xiaojiao, Chen Rensheng, Liu Junfeng, et al. Variation of snow cover and its influence on spring runoff in the source region of Yellow River[J]. Plateau Meteorology, 2020, 39(2): 226-233. |
刘晓娇, 陈仁升, 刘俊峰, 等. 黄河源区积雪变化特征及其对春季径流的影响[J]. 高原气象, 2020, 39(2): 226-233. | |
15 | Xu Xianhua, Li Yanlin, Liu Yihua, et al. Analysis on the variation of snow cover in the south of Huangnan in the last 56 years[J]. Plateau and Mountain Meteorology Research, 2016, 36(4): 65-70. |
许显花, 李延林, 刘义花, 等. 黄南南部近56年积雪变化分析研究[J]. 高原山地气象研究, 2016, 36(4): 65-70. | |
16 | Yang Zhigang, Dawa, Chu Duo. Spatiotemporal variations of snow cover on the Tibetan Plateau over the last 15 years[J]. Remote Sensing Technology and Application, 2017, 32(1): 27-36. |
杨志刚, 达娃, 除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36. | |
17 | Wang Xiaoru, Tang Zhiguang, Wang Jian, et al. Monitoring of snowline altitude at the end of melting season in High Mountain Asia based on MODIS snow cover products[J]. Acta Geographica Sinica, 2020, 75(3): 470-484. |
王晓茹, 唐志光, 王建, 等. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测[J]. 地理学报, 2020, 75(3): 470-484. | |
18 | Dai Liyun, Che Tao, Xie Hongjie, et al. Estimation of snow depth over the Qinghai-Tibetan Plateau based on AMSR-E and MODIS data[J]. Remote Sensing, 2018, 10(12): 1989. |
19 | Chu Duo, Yang Yong, Jiancan Luobu, et al. The variations of snow cover days over the Tibetan Plateau during 1981—2010[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1461-1472. |
除多, 杨勇, 罗布坚参, 等. 1981—2010年青藏高原积雪日数时空变化特征分析[J]. 冰川冻土, 2015, 37(6): 1461-1472. | |
20 | Zhang Guojun, Huang Wanling, Zhou Chunshan, et al. Spatio-temporal characteristics of demographic distribution in China from the perspective of urban agglomeration[J]. Acta Geographica Sinica, 2018, 73(8): 1513-1525. |
张国俊, 黄婉玲, 周春山, 等. 城市群视角下中国人口分布演变特征[J]. 地理学报, 2018, 73(8): 1513-1525. | |
21 | Yan Zihong, Tang Mengge, Wei Lan, et al. Population distribution in northeastern Sichuan: spatio-temporal evolution characteristics based on GIS[J]. Journal of Agriculture, 2020, 10(6): 94-100. |
晏自红, 唐梦鸽, 魏兰, 等. 基于GIS的川东北地区人口分布时空演变特征[J]. 农学学报, 2020, 10(6): 94-100. | |
22 | Chen Sujing, Li Lijuan, Li Jiuyi, et al. Analysis of the temporal and spatial variation characteristics of precipitation in the Lancang River basin over the past 55 years[J]. Journal of Geo-Information Science, 2017, 19(3): 365-373. |
陈素景, 李丽娟, 李九一, 等. 近55年来澜沧江流域降水时空变化特征分析[J]. 地球信息科学学报, 2017, 19(3): 365-373. | |
23 | Wang Haijun, Zhang Bin, Liu Yaolin, et al. Urban expansion patterns and their driving forces based on the center of gravity-GTWR model: a case study of the Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Geographical Sciences, 2020, 30(2): 297-318. |
24 | Wang Zhen, Chen Shuting, Cui Can, et al. Industry relocation or emission relocation? Visualizing and decomposing the dislocation between China’s economy and carbon emissions[J]. Journal of Cleaner Production, 2019, 208: 1109-1119. |
25 | Wang Jianguo, Zhang Fei. Spatial-temporal pattern and gravity center change of fractional vegetation cover in Xinjiang, China from 2000 to 2019[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 188-194. |
王建国, 张飞. 2000—2019年新疆植被覆盖度时空格局及重心变化分析[J]. 农业工程学报, 2020, 36(20): 188-194. | |
26 | Hao Xiaohua, Huang Guanghui, Che Tao, et al. The NIEER AVHRR snow cover extent product over China: a long-term daily snow record for regional climate research[J]. Earth System Science Data, 2021, 13(10): 4711-4726. |
27 | Wang Xuan, Hao Xiaohua, Wang Jian, et al. Accuracy evaluation of long time series AVHRR snow cover area products in China[J]. Remote Sensing Technology and Application, 2018, 33(6): 994-1003. |
王轩, 郝晓华, 王建, 等. 中国地区AVHRR长时间序列积雪范围产品精度评估[J]. 遥感技术与应用, 2018, 33(6): 994-1003. | |
28 | Hao Xiaohua, Ji Wenzheng, Sun Xingliang, et al. Daily 5-km gap-free AVHRR snow cover extent product over China[DS/OL]. Lanzhou: National Cryosphere Desert Data Center, 2020 [2022-01-25]. . |
郝晓华, 纪文政, 孙兴亮, 等. 中国AVHRR逐日无云5 km积雪面积产品数据集[DS/OL]. 兰州: 国家冰川冻土沙漠科学数据中心, 2020 [2022-01-25]. . | |
29 | Che Tao, Dai Liyun. Long-term series of daily snow depth dataset in China (1979—2020)[DS/OL]. Beijing: National Tibetan Plateau Data Center, 2020 [2022-01-25] [. [车涛, 戴礼云. 中国雪深长时间序列数据集(1979—2020)[DS/OL]. 北京: 国家青藏高原科学数据中心, 2020 [2022-01-25]. ] |
30 | Che Tao, Li Xin, Jin Rui, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1): 145-154. |
31 | Dai Liyun, Che Tao. Cross-platform calibration of SMMR, SSM/I and AMSR-E passive microwave brightness temperature[C]// Sixth International Symposium on Digital Earth: data processing and applications. Beijing: The International Society for Digital Earth, 2010: 7841103. |
32 | Dai Liyun, Che Tao, Wang Jian, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127(1): 14-29. |
33 | Dai Liyun, Che Tao, Ding Yongjian. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6): 7212-7230. |
34 | Dai Liyun, Che Tao, Ding Yongjian, et al. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. The Cryosphere, 2017, 11(4): 1933-1948. |
35 | Wang Xuejiao, Wang Xiaoming, Liu Shiwei, et al. Snow cover loss compounding the future economic vulnerability of western China[J]. Science of the Total Environment, 2021, 755: 143025. |
36 | Luo Jiangxin, Shihua Lü, Wang Ting, et al. Variation characteristics of snow cover and its influence on soil water and heat transfer on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020, 39(6): 1144-1154. |
罗江鑫, 吕世华, 王婷, 等. 青藏高原积雪变化特征及其对土壤水热传输的影响[J]. 高原气象, 2020, 39(6): 1144-1154. | |
37 | Bi Zherui, Sachula, Liu Guixiang. Remote sensing analysis of temporal and spatial changes of snow depth in Inner Mongolia from 1982 to 2015[J]. Grassland and Prataculture, 2019, 31(4): 12-18. |
毕哲睿, 萨楚拉, 刘桂香. 1982—2015年内蒙古雪深时空变化遥感分析[J]. 草原与草业, 2019, 31(4): 12-18. | |
38 | Chen Shuting, Guo Bing, Yang Fei, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015[J]. Journal of Natural Resources, 2020, 35(10): 2511-2527. |
陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10): 2511-2527. | |
39 | Cheng Chao, Tong Shaoyu, Peng Haiying, et al. Ecological carrying capacity of water resources in the central Yunnan urban agglomeration area[J]. Resources Science, 2016, 38(8): 1561-1571. |
程超, 童绍玉, 彭海英, 等. 滇中城市群水资源生态承载力的平衡性研究[J]. 资源科学, 2016, 38(8): 1561-1571. | |
40 | Mann H B. Nonparametric tests against trend[J]. Econometrica: Journal of the Econometric Society, 1945, 13(3): 245-259. |
41 | Kendall M G. Rank correlation methods[M]. London: Charles Griffin & Co. Ltd., 1975. |
42 | Gilbert R O. Statistical methods for environmental pollution monitoring[M]. Hoboken, New Jersey, USA: John Wiley & Sons, 1987. |
43 | Theil H. A rank-invariant method of linear and polynomial regression analysis[J]. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 1992, 12(2): 345-381. |
44 | Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389. |
45 | Dietz A J, Kuenzer C, Conrad C. Snow-cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products[J]. International Journal of Remote Sensing, 2013, 34(11): 3879-3902. |
46 | Li Chenhao, Sachula, Liu Guixiang, et al. Spatiotemporal changes of snow cover and its response to climate changes in the Mongolian Plateau from 2000 to 2017[J]. Chinese Journal of Grassland, 2020, 42(2): 95-104. |
李晨昊, 萨楚拉, 刘桂香, 等. 2000~2017年蒙古高原积雪时空变化及其对气候响应研究[J]. 中国草地学报, 2020, 42(2): 95-104. | |
47 | Wang Zengyan, Che Tao. Spatiotemporal distribution of snow cover in arid regions in China[J]. Arid Zone Research, 2012, 29(3): 464-471. |
王增艳, 车涛. 2002—2009年中国干旱区积雪时空分布特征[J]. 干旱区研究, 2012, 29(3): 464-471. | |
48 | Gao Yang, Xie Hongjie, Yao Tandong. Developing snow cover parameters maps from MODIS, AMSR-E, and blended snow products[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77: 351-361. |
49 | Hu Haoran, Liang Ling. Spatial and temporal variations of winter snow over east of Qinghai-Tibet Plateau in the last 50 years[J]. Acta Geographica Sinica, 2013, 68(11): 1493-1503. |
胡豪然, 梁玲. 近50年青藏高原东部冬季积雪的时空变化特征[J]. 地理学报, 2013, 68(11): 1493-1503. | |
50 | Jiang Qi, Luo Siqiong, Wen Xiaohang, et al. Spatial-temporal characteristics of snow and influence factors in the Qinghai-Tibetan Plateau from 1961 to 2014[J]. Plateau Meteorology, 2020, 39(1): 24-36. |
姜琪, 罗斯琼, 文小航, 等. 1961—2014年青藏高原积雪时空特征及其影响因子[J]. 高原气象, 2020, 39(1): 24-36. | |
51 | Che Tao, Hao Xiaohua, Dai Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253. |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253. | |
52 | Yao Yanan, Xu Junrong, Guo Lingpeng, et al. Relationships between temperature and precipitation forms based on the data from meteorological stations: a case study in the Kaidu River basin[J]. Arid Zone Research, 2015, 32(1): 94-101. |
姚亚楠, 徐俊荣, 郭玲鹏, 等. 气温与降水形态关系研究: 以开都河流域为例[J]. 干旱区研究, 2015, 32(1): 94-101. | |
53 | Tan Qiuyang, Cheng Lei, Xu Zongxue, et al. Spatiotemporal distribution of snow cover depth and its driving factors in the Yarlung Zangbo River basin, 1979—2017[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1049-1059. |
谭秋阳, 程磊, 徐宗学, 等. 1979—2017年雅鲁藏布江流域雪深时空分布特征及其影响因素分析[J]. 冰川冻土, 2021, 43(4): 1049-1059. | |
54 | Bai Shuying, Shi Jianqiao, Shen Weishou, et al. Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J]. Remote Sensing for Land & Resources, 2014, 26(1): 144-151. |
白淑英, 史建桥, 沈渭寿, 等. 近30年西藏雪深时空变化及其对气候变化的响应[J]. 国土资源遥感, 2014, 26(1): 144-151. |
[1] | 孙兴亮, 郝晓华, 王建, 赵宏宇, 纪文政. 基于光谱-环境随机森林回归模型的MODIS积雪面积比例反演研究[J]. 冰川冻土, 2022, 44(1): 147-158. |
[2] | 李艳, 金会军, 温智, 赵子龙, 金晓颖. 多年冻土区斜坡稳定性研究综述[J]. 冰川冻土, 2022, 44(1): 203-216. |
[3] | 刘金平, 任艳群, 张万昌, 陶辉, 易路. 雅鲁藏布江流域气候和下垫面变化对径流的影响研究[J]. 冰川冻土, 2022, 44(1): 275-287. |
[4] | 王京达, 郝晓华, 和栋材, 王建, 李弘毅, 赵琴. 基于AVHRR影像的北半球积雪识别算法[J]. 冰川冻土, 2022, 44(1): 316-326. |
[5] | 达伟, 王书峰, 沈永平, 陈安安, 毛炜峄, 张伟. 1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J]. 冰川冻土, 2022, 44(1): 46-55. |
[6] | 张凤, 范成彦, 牟翠翠, 孙文, 彭小清, 张廷军. 积雪对祁连山区黑河上游活动层热状态的影响研究[J]. 冰川冻土, 2021, 43(6): 1628-1640. |
[7] | 邹逸凡,孙鹏,张强,马梓策,吕胤锋,卞耀劲,刘瑞琳. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6): 1641-1658. |
[8] | 除多,扎西顿珠,次丹玉珍. NOAA IMS雪冰产品在青藏高原积雪监测中的适用性分析[J]. 冰川冻土, 2021, 43(6): 1659-1672. |
[9] | 高文德,王昱,李宗省,王文胜,杨盛梅. 高寒内流区极端降水的气候变化特征分析[J]. 冰川冻土, 2021, 43(6): 1693-1703. |
[10] | 张鹏,孙鸿儒,贾丙瑞. 积雪变化对中国森林凋落物分解影响研究进展[J]. 冰川冻土, 2021, 43(6): 1840-1847. |
[11] | 王鑫,王宁练,王俊杰,申保收. 我国新疆北部积雪中痕量元素的时空分布及污染评估[J]. 冰川冻土, 2021, 43(5): 1354-1364. |
[12] | 唐志光,邓刚,胡国杰,王欣,蒋宗立,桑国庆. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411. |
[13] | 张庆杰,陶辉,苏布达,窦挺峰,姜彤. 基于CMIP6气候模式的新疆积雪深度时空格局研究[J]. 冰川冻土, 2021, 43(5): 1435-1445. |
[14] | 卢新玉,陈仁升,刘艳,王秀琴,宋志国. 我国新疆北部地区雪面雨日数时空变化特征分析[J]. 冰川冻土, 2021, 43(5): 1446-1457. |
[15] | 姚俊强,陈静,迪丽努尔·托列吾别克null,韩雪云,毛炜峄. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511. |
|
©2018 冰川冻土编辑部
电话:0931-8260767 E-mail: edjgg@lzb.ac.cn 邮编:730000