1 |
Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482: 514-518.
|
2 |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13: 8-16.
|
3 |
Mackintosh A, Anderson B, Lorrey A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming[J]. Nature Communications, 2017, 8: 14202.
|
4 |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
|
5 |
Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999—2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.
|
6 |
Neckel N, Kropacek J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003—2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014, 9(1): 9-14.
|
7 |
Yang Xiaohui, Zhao Jingdong, Han Hui. Study on glacier mass balance in the Karlik Range, East Tianshan Mountains, 1972—2016[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 1-11.
|
|
杨晓辉, 赵井东, 韩惠. 1972—2016年东天山哈尔里克山地区冰川物质平衡研究[J]. 冰川冻土, 2019, 41(1): 1-11.
|
8 |
Wang Qiuyu, Yi Shuang, Sun Wenke. Precipitation-driven glacier changes in the Pamir and Hindu Kush Mountains[J]. Geophysical Research Letters, 2017, 44(6): 2817-2824.
|
9 |
Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5(6): eaav7266.
|
10 |
Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568: 382-386.
|
11 |
Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857.
|
12 |
Zhang Xin, Zhou Jianmin, Liu Zhiping. DEM extraction and precision evaluation of mountain glaciers in the Qinghai-Tibet Plateau based on KH-9 data: take the Purog Kangri Glacier and the Jiong Glacier as example[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 27-35.
|
|
张鑫, 周建民, 刘志平. 基于KH-9数据对青藏高原山地冰川DEM提取及精度评价: 以普若岗日冰川和雅弄冰川为例[J]. 冰川冻土, 2019, 41(1): 27-35.
|
13 |
Miller P E, Kunz M, Mills J P, et al. Assessment of glacier volume change using ASTER-based surface matching of historical photography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1971-1979.
|
14 |
Berthier E, Toutin T. SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska[J]. Remote Sensing of Environment, 2008, 112(5): 2443-2454.
|
15 |
Wang Shizhe. Estimation of glacier velocity over Tibetan Plateau[D]. Nanjing: Nanjing University, 2019: 47-48.
|
|
王仕哲. 青藏高原冰川流速估算[D]. 南京: 南京大学, 2019: 47-48.
|
16 |
Fujisada H, Sakuma F, Ono A, et al. Design and preflight performance of ASTER instrument protoflight model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1152-1160.
|
17 |
Rosen P A, Eineder M, Rabus B, et al. SRTM-mission: cross comparison of X and C band data properties[C]// IEEE 2001 International Geoscience and Remote Sensing Symposium. New York: IEEE, 2001: 751-753.
|
18 |
Zhang Qibing, Kang Shichang, Wang Jing. Elevation change of the Laohugou Glacier No.12 in the western Qilian Mountains from 2000 to 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 733-740.
|
|
张其兵, 康世昌, 王晶. 2000—2014年祁连山西段老虎沟12号冰川高程变化[J]. 冰川冻土, 2017, 39(4): 733-740.
|
19 |
Pfeffer W T, Arendt A, Bliss A, et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers[J]. Journal of Glaciology, 2014, 60(221): 537-552.
|
20 |
Cuartero A, Quiros E, Felicisimo A M. A study of ASTER DEM accuracies and its dependence of software processing[C]// Proceedings of 6th International Conference on Geomorphology, Zaragoza, Spain, September 7-11, 2005.
|
21 |
Fujisada H, Urai M, Iwasaki A, et al. Advanced methodology for ASTER DEM generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5080-5091.
|
22 |
Nuth C, Kääb A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5(1): 271-290.
|
23 |
Gardelle J, Berthier E, Arnaud Y, et al. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing[J]. Journal of Glaciology, 2012, 58(208): 419-422.
|
24 |
Zhang Guoqing, Chen Wenfeng, Li Gang, et al. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: implication of an enhanced hydrological cycle[J]. Remote Sensing of Environment, 2020, 237: 111554.
|
25 |
Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488: 495-498.
|
26 |
Whyjay Z, Matthew E P, Michael J W, et al. Accelerating glacier mass loss on Franz Josef Land, Russian Arctic[J]. Remote Sensing of Environment, 2018, 211: 357-375.
|
27 |
Wang Cheng, Zhu Xiaoxiao, Nie Sheng, et al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA[J]. Optics Express, 2019, 27: 38168-38179.
|
28 |
Ragettli S, Bolch T, Pellicciotti F. Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal[J]. The Cryosphere, 2016, 10(5): 2075-2097.
|
29 |
Mcnabb R, Nuth C, Kääb A, et al. Sensitivity of glacier volume change estimation to DEM void interpolation[J]. The Cryosphere, 2019, 13(3): 895-910.
|
30 |
Hohle J, Hohle M. Accuracy assessment of digital elevation models by means of robust statistical methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4): 398-406.
|
31 |
Bolch T, Pieczonka T, Benn D I, et al. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5(2): 349-358.
|
32 |
Wei Junfeng, Liu Shiyin, Guo Wanqin, et al. Changes in glacier volume in the north bank of the Bangong Co basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 301-311.
|
33 |
Li Gang, Lin Hui, Ye Qinghua. Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to ~2012 based on multi-baseline bistatic SAR interferometry[J]. Remote Sensing of Environment, 2018, 206: 336-349.
|
34 |
Girod L, Nuth C, Kääb A, et al. MMASTER: improved ASTER DEMs for elevation change monitoring[J]. Remote Sensing, 2017, 9(7): 704.
|
35 |
Sapiano J, Harrison W D, Echelmeyer K A, et al. Elevation, volume and terminus changes of nine glaciers in North America[J]. Journal of Glaciology, 1998, 44(146): 119-135.
|
36 |
Elsberg D H, Harrison W D, Echelmeyer K A, et al. Quantifying the effects of climate and surface change on glacier mass balance[J]. Journal of Glaciology, 2001, 47(159): 649-658.
|
37 |
Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7(3): 877-887.
|
38 |
Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery[J]. Global and Planetary Change, 2015, 128: 1-13.
|
39 |
Ke Linghong, Song Chunqiao, Yong Bin, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 242: 111777.
|
40 |
King O, Bhattacharya A, Bhambri R, et al. Glacial lakes exacerbate Himalayan glacier mass loss[J]. Scientific Reports, 2019, 9: 18145.
|
41 |
Sakai A, Takeuchi N, Fujita K, et al. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas[M]// Debris-covered glaciers: IAHS publication No. 265. Wallingford, UK: IAHS Press, 2000: 119-130.
|
42 |
Zhang Guoqing. Data on glacial lakes in the TPE V 1.0) (1990, 2000, 2010)[DS/OL]. Beijing: National Tibetan Plateau Data Center, 2018 [2020-09-21]. https://data.tpdc.ac.cn/zh-hans/data/4704e1b8-1e99-43f6-b1a3-fd78a08de808. [张国庆. 第三极地区冰湖数据(V1.0) (1990, 2000, 2010
|
|
[DS/OL]. 北京: 国家青藏高原科学数据中心, 2018 [2020-09-21]. ]
|
43 |
Wang Xin, Guo Xiaoyu, Yang Chengde, et al. Glacial lake inventory of High Mountain Asia[DS/OL]. Lanzhou: National Cryosphere Desert Data Center, 2019 [2020-09-21]. .
|
|
王欣, 郭小宇, 杨成德, 等. 高亚洲冰湖编目数据集[DS/OL]. 兰州: 国家冰川冻土沙漠科学数据中心, 2019 [2020-09-21]. .
|
44 |
Wang Yetang, Hou Shugui, Lu Anxin, et al. Response of glacier variations in the eastern Tianshan Mountains to climate change, during the last 40 years[J]. Arid Land Geography, 2008, 31(6): 813-821.
|
|
王叶堂, 侯书贵, 鲁安新, 等. 近40年来天山东段冰川变化及其对气候的响应[J]. 干旱区地理, 2008, 31(6): 813-821.
|
45 |
Maussion F, Scherer D, Molg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis[J]. Journal of Climate, 2014, 27(5): 1910-1927.
|
46 |
Yao Tandong, Thompson L, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
47 |
Ye Baisheng, Ding Yongjian, Liu Chaohai. Response of valley glaciers in various size and their runoff to climate change[J]. Journal of Glaciology and Geocryology, 2001, 23(2): 103-110.
|
|
叶柏生, 丁永建, 刘潮海. 不同规模山谷冰川及其径流对气候变化的响应过程[J]. 冰川冻土, 2001, 23(2): 103-110.
|